My ex-girlfriend thinks I'm mean and my current one thinks I'm average Maybe you've set your bar too high?		AP Statistics Unit 1: Descriptive Statistics Chapters 1-5 14 15			
Contingency Tables	an com E-mail randy Bylasbergen.com			Intro Day 1 Smelling Parkinsons	Intro Day 2 Smelling Parkinsons HW: reading guide
http://bit.ly/22JAX3n	20 3.1 Rent-a-Date Categorical Data HW: p38(11-13)	21 3.2 Contingency Tables Independence HW: p41(28,29)	22 4.2/ Summary Statis Spr Samatha HW: p75	23 /4.3 stics – Center & ead 's Family 5 (32-34)	24 4.4 Quantitative Graphs by hand HW: p76 (34, 40, + box plot)
http://bit.ly/1PAzDgX	27 4.5 Quantitative Graphs with technology HW: p72(5-8)	28 5.1 Comparing Distributions HW: p97 (13-16)	29 5. Review/ Gather HW -	30 .2 Practice - due Friday!	31 5.3 Unit Test

A. Interpreting graphical displays of distributions of univariate data (dotplot, stemplot, histogram, cumulative frequency plot.)

- 1. Center and spread
- 2. Clusters and gaps
- 3. Outliers and other unusual features
- 4. Shape

B. Summarizing distributions of univariate data

- 1. Measuring center: median, mean
- 2. Measuring spread: range, interquartile range, standard deviation
- 3. Measuring position: quartiles, percentiles
- 4. Using boxplots
- 5. The effect of changing units on summary measures
- C. Comparing distributions of univariate data (dotplots, back-to-back stemplots, parallel boxplots
 - 1. Comparing center and spread: within group, between group variation
 - 2. Comparing clusters and gaps
 - 3. Comparing outliers and other unusual features
 - 4. Comparing shapes
- E. Exploring categorical data: frequency tables
 - 1. Frequency tables and bar charts
 - 2. Marginal and joint frequencies for two-way tables
 - 3. Conditional relative frequencies and association
 - 4. Comparing distributions using bar charts

http://bit.ly/231Vka

Formulas

(I) Descriptive Statistics

$$\overline{x} = \frac{\sum x_i}{n}$$

$$s_x = \sqrt{\frac{1}{n-1} \sum (x_i - \overline{x})^2}$$

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}}$$

$$\widehat{y} = b_0 + b_1 x$$

$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

$$b_0 = \overline{y} - b_1 \overline{x}$$

$$r = \frac{1}{n-1} \sum \left(\frac{x_i - \overline{x}}{s_x}\right) \left(\frac{y_i - \overline{y}}{s_y}\right)$$

$$b_1 = r \frac{s_y}{s_x}$$

 $s_{b_1} = \frac{\sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n - 2}}}{\sqrt{\sum (x_i - \overline{x})^2}}$