Name	
	1.10

Math 2 Unit 4 Review

1. Rewrite each of these quadratic expression in equivalent standard form.

a. (x-8)(x+1)

b. (2x+9)(x-2)

c. (x-5)(x+5)

d. $(x-2)^2$

2. Factor completely each of these quadratic expressions.

a. $x^2 - 11x + 18$ b. $x^2 - 36$

c. $x^2 - 14x + 49$

d. $x^2 - 7x - 8$

- 3. Graph the following quadratic equation without a calculator. Your graph much include the following critical components: x-intercepts, y-intercept, vertex, directrix, and focus. To receive full credit you must show all of your work for each component: $y = x^2 + 4x - 12$
 - a. x-intercepts:
 - b. y-intercept:
 - c. min/max (vertex):
 - d. directrix:
 - e. focus:
- 4. Given the focus (4, 2) and directrix y = -4.
 - a. Sketch the graph of the quadratic including focus, directrix and vertex.
 - b. Write the quadratic equation in vertex form including the correct a value. Show your work.
- 5. Jared stands in the throwing ring to throw his shotput. The shot's heights (in meters above ground), x second after Jared threw it, is modeled by: $h(x) = -3x^2 + 3x + 6$
 - a. At what time does the shot hit the ground?
 - b. Sketch a graph of the situation using the vertex, y-intercept, and x-intercept.

Name

Math 2 Unit 4 Review

1. Rewrite each of these quadratic expression in equivalent standard form.

a. (x-8)(x+1)

b. (2x+9)(x-2)

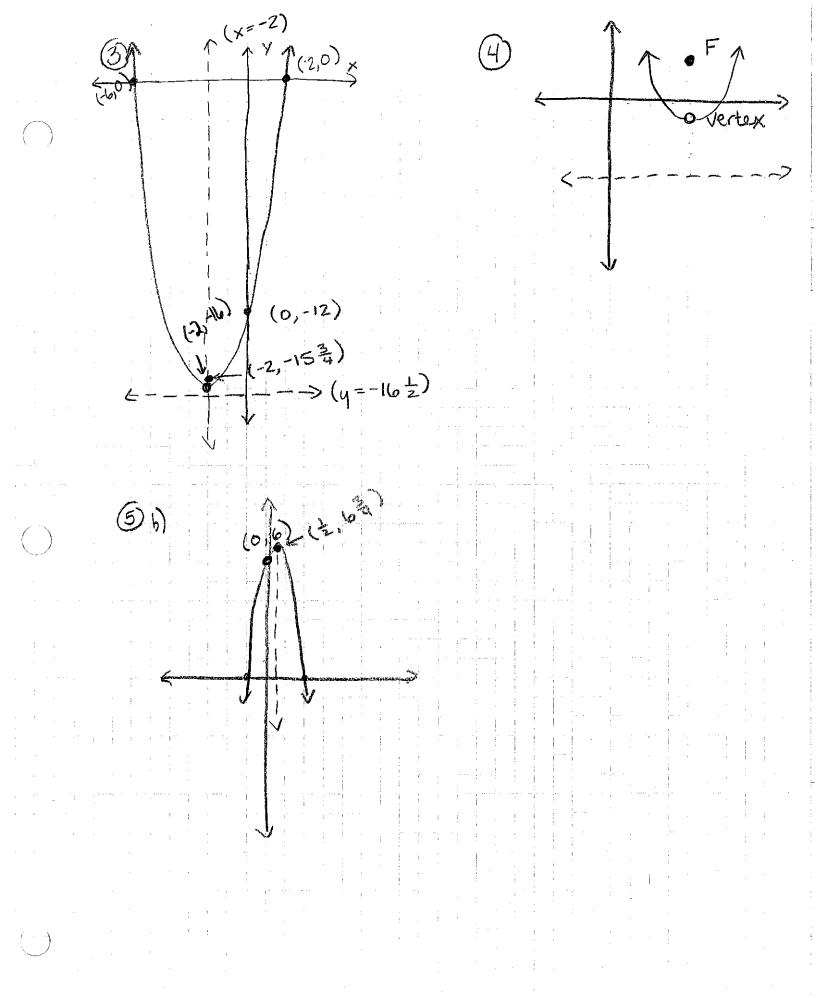
c. (x-5)(x+5)

d. $(x-2)^2$

2. Factor completely each of these quadratic expressions.

a. $x^2 - 11x + 18$ b. $x^2 - 36$

c. $x^2 - 14x + 49$


d. $x^2 - 7x - 8$

- 3. Graph the following quadratic equation without a calculator. Your graph much include the following critical components: x-intercepts, y-intercept, vertex, directrix, and focus. To receive full credit you must show all of your work for each component: $y = x^2 + 4x - 12$
 - a. x-intercepts:
 - b. y-intercept:
 - c. min/max (vertex):
 - d. directrix:
 - e. focus:
- 4. Given the focus (4, 2) and directrix y = -4.
 - a. Sketch the graph of the quadratic including focus, directrix and vertex.
 - b. Write the quadratic equation in vertex form including the correct a value. Show your work.
- 5. Jared stands in the throwing ring to throw his shotput. The shot's heights (in meters above ground), x second after Jared threw it, is modeled by: $h(x) = -3x^2 + 3x + 6$
 - a. At what time does the shot hit the ground?
 - b. Sketch a graph of the situation using the vertex, y-intercept, and x-intercept.

/ a)
$$(x-8)(x+1)$$
 b) $(2x+9)(x-2)$
 x^2-7x-8 $2x^2+5x-18$
c) $(x-5)(x+3)$ d) $(x-2)^2 = (x-2)(x-2)$
 $x^2-1x+18$ b) x^2-36
 $(x-9)(x-2)$ $(x-6)(x+6)$
c) $x^2-14x+49$ d) x^2-7x-8
 $(x-7)^2$ $(x-6)(x+6)$
3. $y=x^2+4x-12$ $(x+6)(x-2)$
 $x-10x+3(-6,0)(2,0)$ $x+6=0$ $x-2=0$
 $y-1x+3(-6,0)(2,0)$ $x+6=0$ $x-2=0$
 $y-1x+3(-6,0)(2,0)$ $x+6=0$ $x=2$
 $y=16x+3(-2,-16)$ $y=-\frac{6+2}{2}$
 $y=16x+3(-2,-16)$ $y=-\frac{6+2}{2}$
 $y=1(x+2)^2-16$ $y=(-2)^2+4(-2)-12$
 $y=1(x+2)^2-16$ $y=(-2)^2+4(-2)-12$
 $y=16x+3(-4)^2=16$ $y=-16$

4. focus $(4,2)$ $y=-4$
 $(y-2)^2+(x-4)^2=16$ $(y-4)^2+(x-x)^2$
 $(y-2)^2+(x-4)^2=16$ $(y-4)^2+(x-2)^2$
 $(y-2)^2+(x-4)^2=16$ $(y-4)^2+(x-2)$
 $(y-2)^2+(x-4)^2=16$ $(y-4)^2+(x-2)$
 $(y-2)^2+(x-2)$
 $(y-2)^2+(x-2)$
 $(y-2)^2+(x-2)$
 $(y-2)^2+(x-2)$
 $(y-2)^2+(x-2)$
 $(y-2)^2+(x-2)$
 $(y-2)^2+(x-2)$
 $(y-2)^2+(x-2)$
 $(y-2)^2+(x-2)$
 $(y-2)^2+(y-2)$
 $(y-2)^2+(y-2)$
 $(y-2)^2+(y-2)$
 $(y-2)^2+(y-2)$
 $(y-$

5. $h(x) = -3x^2 + 3x + 6$ $\Rightarrow -3(x^2 - x - 2)$ y-intercept: (6,0) $\Rightarrow -3(x - 2)(x + 1)$ x - intercept(s): (2,0)(-1,0) $\Rightarrow x - 2 = 0$ $\Rightarrow x - 2 = 0$ vertex: $(\frac{1}{2}, 6\frac{3}{4})$ $\Rightarrow x = 2$ $\Rightarrow x = -1$ $0 \times 10 \times 10^2 + 3(\frac{1}{2}) + 6$ $0 \times 10^2 + 3(\frac{1}{2}) + 6$ $0 \times 10^2 + 3 = \frac{1}{2} + 6$ $0 \times 10^$

