Study Session Week of 10/2

Objectives:

- I will examine and conclude what happens to shape, center \& spread under linear transformations.
- I will apply that knowledge to free response and/or multiple choice questions.
Agenda:
- Together enter data.
- Perform some linear transformations and examine their effects.
- Practice in Free Response and/or Multiple Choice questions.

Data Transformations - step 1

- We will use the following data (just numbers) based on self-reports from the National Survey of Student Engagement(NSSE)in a spreadsheet in your calculator In hours per week

Note: Majors shown are a sampling from a list of 85. https://thesocietypages.org/socimages/2012/ 05/30/how-much-do-students-study/

Data Transformations - step 2

- Create the following table on your paper

- Complete the summary statistics for the hours $->1 \mathrm{var}$

Shape doesnt stats change except for "spread"

Data Transformations - step 3

- Set up column "b" to convert hours to minutes - label that column "minutes" and use the formula " $=60^{*} \mathrm{a}$ "
- Find those summary statistics
- Set up column "c" that adjusts the original data for selfreporting by subtracting $1 / 2$ hour (.5) - label that column "self" and use the formula "=a-0.5"

Measures of Center	Hours	Minutes (x 60)	Self-Report (- .5)	Rule 60x - 30
Mean				
Median				
Mode				
Measures of Spread	Hours	Minutes (x 60)	Self-Report (- .5)	Rule 60x - 30
Standard Deviation				
IQR				
Range				

Data Transformations - step 4

- Set up column " d " to view the entire rule - label that "rule" and use the formula " $=60 * a-30$ "
- Find those summary statistics
- Create 4 box plots (one for each column) and sketch them on your paper side-by-side with the same scale

Measures of Center	Hours	Minutes (x 60)	Self-Report (- .5)	Rule 60x - 30
Mean				
Median				
Mode				
Measures of Spread	Hours	Minutes (x 60)	Self-Report (- .5)	Rule 60x - 30
Standard Deviation				
IQR				
Range				

Data Transformations - step 5

- Write a conclusion about the effects of multiplying (dividing too) and subtracting (adding too) on shape, center \& spread.

$$
\begin{aligned}
& \text { tors } \rightarrow Q_{3}=17.1 \\
& I Q R=3.85 \geqslant{ }^{2} \\
& 17.1+1.5(3.85) \\
& Q 3+1.5 I Q R
\end{aligned}
$$

What about extremes?
 examine how your summary statistics changed.

- Add this information to your conclusion.

$$
\text { Med change } \frac{\sigma_{x} \text { Increase increase }}{\text { Range increase }}
$$

Suppose that the distribution of a set of scores has a mean of 47 and a standard deviation of 14 . If 4 is added to
each score, what will be the mean and the standard deviation of the distribution of new scores?
Mean

(A) 51
(B) 51
(C) 47
(D) 47
(E) 47

14

A company wanted to determine the health care costs of its employees. A sample of 25 employees were interviewed and their medical expenses for the previous year were determined. Later the company discovered that the highest medical expense in the sample was mistakenly recorded as 10 times the actual amount. However, after correcting the error, the corrected amount was still greater than or equal to any other medical expense in the sample. Which of the following sample statistics must have remained the same after the correction was made?
\$ Mean
(B) Median
(\&) Mode
D> Range
V近 Variance $=\sigma^{2}$

