Study Session Week of 10/2

Objectives:

- you need a calculator • I will examine and conclude what happens to shape, center & spread under linear transformations.
- I will apply that knowledge to free response and/or multiple choice questions.

Agenda:

- Together enter data.
- Perform some linear transformations and examine their effects.
- Practice in Free Response and/or Multiple Choice questions.

 We will use the following data (just numbers) based on self-reports from the <u>National Survey of Student</u> <u>Engagement</u>(NSSE)in a spreadsheet in your calculator

1006 In I

Architecture	23.7
Chemical engineering	21.6
Physics	19.7
Chemistry	18.4
Art	18.1
Nursing	18
Music	17.5
Biology	16.7
Mathematics	16.4
Philosophy	16.2
Theater	16
Anthropology	16
English	15.9
Elementary education	15.2

Accounting	15.1
History	15
Computer science	14.7
Political science	14.6
Economics	14.4
Psychology	13.9
Sociology	13.8
Finance	13.3
Business administration	13.2
Journalism	12.8
Communications	12.5
Marketing	12.1
Physical education	11.8
Leisure studies	11.1

Note: Majors shown are a sampling from a list of 85.

https://thesocietypages.org/socimages/2012/ 05/30/how-much-do-students-study/

Create the following table on your paper

			1 1		
Measures of Co	enter	Hours	Minutes (x 60)	Self-Report (- 30)	Rule 60x - 30
Mean	×	15.4	927,9	897.9	both
Median	Med	15.1	906	876	X and -
Mode		16	960	930	
Measures of Sp	oread	Hours	Minutes (x 60)	Self-Report (- 30)	Rule 60x - 30
Measures of Sp Standard Devia	oread	Hours 2.9	Minutes (x 60) ノフフ. <i>ひ</i>	Self-Report (- 30)	Rule 60x - 30
Measures of Sp Standard Devia	pread ition なみ-なり	Hours 2.9 3.85	Minutes (x 60) 177.08 23)	Self-Report (- 30) 77.0%	Rule 60x - 30 My ply Mutiply
Measures of Sp Standard Devia IQR (3 Range Ma	oread Ition RB-QI X-Min	Hours 2.9 3.85 12.9	Minutes (x 60) 177.08 23) フォム	Self-Report (- 30) 77.0% 231 774	Rule 60x - 30 My ply Mutiply

1006

• Complete the summary statistics for the hours - P 2 var Stats Shape doesn' Stats change except for "Spread"

- Set up column "b" to convert hours to minutes label that column "minutes" and use the formula "=60*a"
 - Find those summary statistics
- Set up column "c" that adjusts the original data for selfreporting by subtracting ½ hour (.5) – label that column "self" and use the formula "=a-0.5"

Measures of Center	Hours	Minutes (x 60)	Self-Report (5)	Rule 60x - 30
Mean				
Median				
Mode				
Measures of Spread	Hours	Minutes (x 60)	Self-Report (5)	Rule 60x - 30
Measures of SpreadStandard Deviation	Hours	Minutes (x 60)	Self-Report (5)	Rule 60x - 30
Measures of SpreadStandard DeviationIQR	Hours	Minutes (x 60)	Self-Report (5)	Rule 60x - 30

<u>Data Transformations – step 4</u>

- Set up column "d" to view the entire rule label that "rule" and use the formula "=60*a – 30"
 - Find those summary statistics
- Create 4 box plots (one for each column) and sketch them on your paper side-by-side with the same scale

Measures of Center	Hours	Minutes (x 60)	Self-Report (5)	Rule 60x - 30
Mean				
Median				
Mode				
Measures of Spread	Hours	Minutes (x 60)	Self-Report (5)	Rule 60x - 30
Measures of Spread Standard Deviation	Hours	Minutes (x 60)	Self-Report (5)	Rule 60x - 30
Measures of Spread Standard Deviation	Hours	Minutes (x 60)	Self-Report (5)	Rule 60x - 30

Write a conclusion about the effects of multiplying (dividing too) and subtracting (adding too) on shape, center & spread.
Hers -D Q3 = 17.1
TQR = 3.85 FI

What about extremes?

• I have seen studies that electrical engineers study about 30 hours per week, put that value into the data set and examine how your summary statistics changed.

+ 1.5(3.85)

• Add this information to your conclusion. X Increase \mathcal{T}_{x} increase Med No change \mathcal{T}_{QR} wo change Runge increase

Sup eac	pose that the score, wh	ne distribution of a set of at will be the mean and t	scores has a mean of 47 and a standard deviation of 14. If 4 is added to he standard deviation of the distribution of new scores?
	Mean	Standard Deviation	51
(A)	51	14	
(B)	51	18	
(C)	47	14	
(D)	47	16	
(E)	47	18	

A company wanted to determine the health care costs of its employees. A sample of 25 employees were interviewed and their medical expenses for the previous year were determined. Later the company discovered that the highest medical expense in the sample was mistakenly recorded as 10 times the actual amount. However, after correcting the error, the corrected amount was still greater than or equal to any other medical expense in the sample. Which of the following sample statistics must have remained the same after the correction was made?

(A) Mean	
(B) Median	
(SX Mode	
(D) Range	
Variance = \int^2	