AP Statistics

Cumulative AP Exam Study Guide

Statistics - the science of collecting, analyzing, and drawing conclusions from data.
Descriptive - methods of organizing and summarizing statistics
Inferential - making generalizations from a sample to the population.
Population - an entire collection of individuals or objects.
Sample - A subset of the population selected for study.
Variable - any characteristic whose value changes.
Data - observations on single or multi-variables.

Variables

Categorical - (Qualitative) - basic characteristics
Numerical - (Quantitative) - measurements or observations of numerical data.
Discrete - listable sets (counts)
Continuous - any value over an interval of values (measurements)
Univariate - one variable
Bivariate - two variables
Multivariate - many variables

Distributions

Symmetrical - data on which both sides are fairly the same shape and size. "Bell Curve"
Uniform - every class has an equal frequency (number) "a rectangle"
Skewed - one side (tail) is longer than the other side. The skewness is in the direction that the tail points (left or right)
Bimodal - data of two or more classes have large frequencies separated by another class between them. "double hump camel"

How to describe numerical graphs - C. U. S. S.
Center - middle of the data (mean, median, and mode)
Unusual features - outliers, gaps, clusters, etc.
Shape - overall type (symmetrical, skewed right left, uniform, or bimodal)
Spread - refers to variability (range, standard deviation, and IQR)
*Everything must be in context to the data and situation of the graph.
*When comparing two distributions - MUST use comparative language!
Parameter - value of a population (typically unknown)
Statistic - a calculated value about a population from a sample(s).
Measures of Center
Median - the middle point of the data (50th percentile) when the data is in numerical order. If two values are present, then average them together.
Mean $-\mu$ is for a population (parameter) and x is for a sample (statistic).
Mode - occurs the most in the data. There can be more then one mode, or no mode at all if all data points occur once.

Variability - allows statisticians to distinguish between usual and unusual occurrences.

Measures of Spread (variability)
Range - a single value - (Max - Min)
IQR - interquartile range - (Q3-Q1)
Standard deviation - σ for population (parameter) \& s for sample (statistic) - measures the typical or average deviation of observations from the mean - sample standard deviation is divided by $\mathrm{df}=\mathrm{n}-1$
*Sum of the deviations from the mean is always zero!
Variance - standard deviation squared
Resistant - not affected by outliers.

Resistant	Non-Resistant	
Median	Mean	Standard Deviation
IQR	Range	Correlation Coefficient (r)
	Variance	Least Squares Regression Line (LSRL)
		Coefficient of Determination (R2)

Comparison of mean \& median based on graph type
Symmetrical - mean and the median are the same value.
Skewed Right - mean is a larger value than the median.
Skewed Left - the mean is smaller than the median.
*The mean is always pulled in the direction of the skew away from the median.
*Make sure to use comparison words (greater, less, smaller, equal, etc.)
Linear Transformations of random variables
$\mu_{a+b x}=a+b \mu_{x} \quad$ The mean is changed by BOTH addition (subtract) \& multiplication (division)
$\sigma_{a+b x}=|b| \sigma \quad$ The standard deviation is changed by multiplication (division) only
Combination of two (or more) random variables
$\mu_{x \pm y}=\mu_{x} \pm \mu_{y} \quad$ Just add or subtract the two (or more) means
$\sigma_{x \pm y}=\sqrt{\sigma_{x}+\sigma_{y}} \quad$ Always add the variances $-\mathrm{X} \&$ Y MUST be independent
Z-Score - is a standardized score. This tells you how many standard deviations from the mean an observation is. It creates a standard normal curve consisting of z-scores with a $\mu=0 \& \sigma=1$.

$$
z=\frac{x-\mu}{\sigma}
$$

Normal Curve - is a bell shaped and symmetrical curve.
As σ increases the curve flattens.
As σ decreases the curve thins.
Empirical Rule (68-95-99.7) measures $1 \sigma, 2 \sigma$, and 3σ on normal curves from a center of μ.
68% of the population is between -1σ and 1σ
95% of the population is between -2σ and 2σ
99.7% of the population is between -3σ and 3σ

Boxplots - are for medium or large numerical data. It does not contain original observations. Always use modified boxplots where the fences are 1.5 IQRs from the ends of the box (Q1 \& Q3). Points outside the fence are considered outliers. Whiskers extend to the smallest \& largest observations within the fences.

5-Number Summary - Minimum, Q1 (1st Quartile 25th Percentile), Median, Q3 (3rd Quartile - 75th Percentile), Maximum

Probability Rules

Sample Space - is collection of all outcomes.
Event - any sample of outcomes.
Complement - all outcomes not in the event.
Union - A or B, all the outcomes in both circles. A $\cup \mathrm{B}$
Intersection - A and B, happening in the middle of A and $B . A \cap B$
Mutually Exclusive (Disjoint) - A and B have no intersection. They cannot happen at the same time.
Independent - if knowing one event does not change the outcome of another.
Experimental Probability - is the number of success from an experiment divided by the total amount from the experiment.
Law of Large Numbers - as an experiment is repeated the experimental probability gets closer and closer to the true (theoretical) probability. The difference between the two probabilities will approach " 0 ".
Rules
(1) All values are $0<\mathrm{P}<1$.
(2) Probability of sample space is 1 .
(3) Compliment $=\mathrm{P}+(1-\mathrm{P})=1$
(4) Addition $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \& \mathrm{~B})$
(5) Multiplication $\mathrm{P}(\mathrm{A} \& \mathrm{~B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$ if a \& B are independent
(6) P (at least 1 or more) $=1-\mathrm{P}$ (none)
(7) Conditional Probability - takes into account a certain condition. $P(A \mid B)=\frac{P(A \& B)}{P(B)}=\frac{P(\text { both })}{P(\text { given })}$

Describing a scatterplot (remember, must have quantitative data for BOTH axes): D.U.F.S.
Direction (positive, negative)
Unusual Features (outliers, clusters, etc.)
Form (linear or non-linear)
Strength (strong, weak, moderate)
Least Squares Regression Line (LSRL) - is a line of mathematical best fit. Minimizes the deviations (residuals) from the line. Used with bivariate data.
$\hat{y}=a+b x \quad \mathrm{x}$ is independent, the explanatory variable \& y is dependent, the response variable
Residuals (error) - is vertical difference of a point from the LSRL. All residuals sum up to " 0 ".
Residual $=y-\hat{y}$
Residual Plot - a scatterplot of (x (or \hat{y}), residual). No pattern indicates a linear relationship.
Correlation Coefficient - (r) - is a quantitative assessment of the strength and direction of a linear relationship.
Values - $[-1,1] 0-$ no correlation, $(0, \pm .5)$ - weak, $[\pm .5, \pm .8)$ - moderate, $[.8, \pm 1]$ - strong
Coefficient of Determination (R^{2}) - gives the proportion of variation in y (response) that is explained by the relationship of (x, y). Never use the adjusted R^{2}.

Interpretations: must be in context!
Slope (b) - For unit increase in x, then the y variable will predict an increase/decrease slope amount.
Correlation coefficient (r) - There is a strength, direction, linear association between $\mathrm{x} \& \mathrm{y}$.
Coefficient of determination $\left(r^{2}\right)$ - Approximately $r^{2} \%$ of the variation in y can be explained by the LSRL of x any y .
Extrapolation - LRSL cannot be used to find values outside of the range of the original data.
Influential Points - are points that if removed significantly change the LSRL.
Outliers - are points with large residuals.

Census - a complete count of the population. Why not to use a census?
Expensive, impossible to do, if destructive sampling you get extinction
Sampling Frame - is a list of everyone in the population.
Sampling Design - refers to the method used to choose a sample.
SRS (Simple Random Sample) - one chooses so that each unit has an equal chance and every set of units has an equal chance of being selected.
Advantages: easy and unbiased
Disadvantages: large $\sigma 2$ and must know population.
Stratified - divide the population into homogeneous groups called strata, then SRS each strata.
Advantages: more precise than an SRS and cost reduced if strata already available.
Disadvantages: difficult to divide into groups, more complex formulas \& must know population.
Systematic - use a systematic approach (every 50th) after choosing randomly where to begin.
Advantages: unbiased, the sample is evenly distributed across population \& don't need to know population. Disadvantages: a large $\sigma 2$ and can be confounded by trends.
Cluster Sample - based on location. Select a random location and sample ALL at that location.
Advantages: cost is reduced, is unbiased\& don't need to know population.
Disadvantages: May not be representative of population and has complex formulas.
Random Digit Table - each entry is equally likely and each digit is independent of the rest.
Random \# Generator - Calculator or computer program
Bias - Error - favors a certain outcome, has to do with center of sampling distributions - if centered over true parameter then considered unbiased

Sources of Bias

- Voluntary Response - people choose themselves to participate.
- Convenience Sampling - ask people who are easy, friendly, or comfortable asking.
- Undercoverage - some group(s) are left out of the selection process.
- Non-response - someone cannot or does not want to be contacted or participate.
- Response - false answers - can be caused by a variety of things
- Wording of the Questions - leading questions.

Experimental Design

Observational Study - observe outcomes with out giving a treatment.
Experiment - actively imposes a treatment on the subjects.
Experimental Unit - single individual or object that receives a treatment.
Factor - is the explanatory variable, what is being tested
Level - a specific value for the factor.
Response Variable - what you are measuring with the experiment.
Treatment - experimental condition applied to each unit.
Control Group - a group used to compare the factor to for effectiveness - does NOT have to be placebo
Placebo - a treatment with no active ingredients (provides control).
Blinding - a method used so that the subjects are unaware of the treatment (who gets a placebo or the real treatment).
Double Blinding - neither the subjects nor the evaluators know which treatment is being given.

Principles

Control - keep all extraneous variables (not being tested) constant
Replication - uses many subjects to quantify the natural variation in the response.
Randomization - uses chance to assign the subjects to the treatments.

The only way to show cause and effect is with a well designed, well controlled experiment.
Experimental Designs
Completely Randomized - all units are allocated to all of the treatments randomly
Randomized Block - units are blocked and then randomly assigned in each block -reduces variation
Matched Pairs - are matched up units by characteristics and then randomly assigned. Once a pair receives a certain treatment, then the other pair automatically receives the second treatment. OR individuals do both treatments in random order (before/after or pretest/post-test). Assignment is dependent
Confounding Variables - are where the effect of the variable on the response cannot be separated from the effects of the factor being tested - happens in observational studies - when you use random assignment to treatments you do NOT have confounding variables!
Randomization - reduces bias by spreading extraneous variables to all groups in the experiment.
Blocking - helps reduce variability. Another way to reduce variability is to increase sample size.
Random Variable - a numerical value that depends on the outcome of an experiment.
Discrete - a count of a random variable
Continuous - a measure of a random variable
Discrete Probability Distributions -gives values \& probabilities associated with each possible x.

$$
\mu_{x}=\Sigma x_{i} p\left(x_{i}\right) \text { and } \sigma_{x}=\sqrt{\Sigma\left(x_{i}-\mu_{2}\right)^{2} p\left(x_{i}\right)}
$$

Fair Game - a fair game is one in which all pay-ins equal all pay-outs.
Special discrete distributions:
Binomial Distributions
Properties- two mutually exclusive outcomes, fixed number of trials (n), each trial is independent, the probability (p) of success is the same for all trials,
Random variable - is the number of successes out of a fixed \# of trials. Starts at $\mathrm{X}=0$ and is finite.

$$
\mu_{x}=n p \quad \sigma_{x}=\sqrt{n p q} \quad{ }^{* *} \text { on formula sheet }{ }^{* *}
$$

Calculator: \quad binomialpdf $(\mathrm{n}, \mathrm{p}, \mathrm{x})=$ single outcome $\mathrm{P}(\mathrm{X}=\mathrm{x})$
binomialcdf ($\mathrm{n}, \mathrm{p}, \mathrm{x}$) $=$ cumulative outcome $\mathrm{P}(\mathrm{X}<\mathrm{x})$
Geometric Distributions
Properties -two mutually exclusive outcomes, each trial is independent, probability (p) of success is the same for all trials. (NOT a fixed number of trials)
Random Variable -when the FIRST success occurs. Starts at 1 and is ∞.

$$
\mu_{x}=\frac{1}{p} \quad \sigma_{x}=\sqrt{\frac{q}{p^{2}}} \quad{ }^{* *} \text { not on formula sheet }{ }^{* *}
$$

Calculator: \quad geometricpdf $(p, x)=$ single outcome $P(X=x)$
geometriccdf $(p, x)=$ cumulative outcomes $\mathrm{P}(\mathrm{X}<\mathrm{x})$
Continuous Random Variable -numerical values that fall within a range or interval (measurements), use density curves
where the area under the curve always $=1$. To find probabilities, find area under the curve
Unusual Density Curves -any shape (triangles, etc.)
Uniform Distributions -uniformly (evenly) distributed, shape of a rectangle
Normal Distributions -symmetrical, unimodal, bell shaped curves defined by the parameters $\mu \& \sigma$
Calculator: \quad Normalpdf - used for graphing only
Normalcdf(lb, ub, μ, σ) - finds probability
$\operatorname{InvNorm}(\mathrm{p})$ - z -score $\operatorname{OR} \operatorname{InvNorm}(\mathrm{p}, \mu, \sigma)$ - gives x -value
To assess Normality - Use graphs - dotplots, boxplots, histograms, or normal probability plot.
Distribution - is all of the values of a random variable.
Sampling Distribution - of a statistic is the distribution of all possible values of all possible samples. Use normalcdf to calculate probabilities - be sure to use correct SD

sample means	$\mu_{\bar{x}}=\mu_{x}$	$\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}$
sample proportion	$\mu_{\hat{p}}=p$	$\sigma_{\hat{p}}=\sqrt{\frac{p q}{n}}$
difference of sample means	$\mu_{\bar{x}_{1}-\bar{x}_{2}}=\mu_{\bar{x}_{1}-\bar{x}_{2}}$	$\sigma_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$
difference in sample proportions	$\mu_{\bar{x}_{1}-\bar{x}_{2}}=p_{1}-p_{s}$	$\sigma_{p_{1}-p_{2}}=\sqrt{\frac{p_{1}}{n_{1}}+\frac{p_{2}}{n_{2}}}$
slopes of the LSRL's	$\mu_{b}=\mathrm{B}$	$s_{b_{1}}$ (do not need to find, usually given in computer printout)

Standard error - estimate of the standard deviation of the statistic
Central Limit Theorem - when n is sufficiently large ($\mathrm{n}>30$) the sampling distribution is approximately normal even if the population distribution is not normal.

Confidence Intervals

Point Estimate - uses a single statistic based on sample data, this is the simplest approach.
Confidence Intervals - used to estimate the unknown population parameter.
Margin of Error - the smaller the margin of error, the more precise our estimate
Steps:
Assumptions - see table below
Calculations - C.I. $=$ statistic \pm critical value (standard deviation of the statistic)
Conclusion - Write your statement in context.
We are $[\mathrm{x}] \%$ confident that the true [parameter] of [context] is between [a] and [b].
What makes the margin of error smaller
-make critical value smaller (lower confidence level).
-get a sample with a smaller s.
-make n larger.
T distributions compared to standard normal curve

- centered around 0
- more spread out and shorter
- more area under the tails.
- when you increase n , t -curves become more normal.
- can be no outliers in the sample data
- Degrees of Freedom $=n-1$

Robust - if the assumption of normality is not met, the confidence level or p-value does not change much - this is true of t -distributions because there is more area in the tails

Hypothesis Tests

Hypothesis Testing - tells us if a value occurs by random chance or not. If it is unlikely to occur by random chance then it is statistically significant.

Null Hypothesis - H0 is the statement being tested. Null hypothesis should be "no effect", "no difference", or "no relationship"

Alternate Hypothesis - Ha is the statement suspected of being true.
P -Value - assuming the null is true, the probability of obtaining the observed result or more extreme
Level of Significance $-\alpha$ is the amount of evidence necessary before rejecting the null hypothesis.
Steps:
Assumptions/Conditions - see table below
Hypotheses - don't forget to define parameter
Calculations - find z or t test statistic \& p -value
Conclusion - Write your statement in context.
Since the p-value is $\langle(>) \alpha$, I reject (fail to reject) the Ho. There is (is not) sufficient evidence to suggest that [Ha].

Type I and II Errors and Power

Type I Error - is when one rejects H 0 when H 0 is actually true. (probability is α)
Type II Error - is when you fail to reject H 0 , and H 0 is actually false. (probability is β)
α and β are inversely related. Consequences are the results of making a Type I or Type II error. Every decision has the possibility of making an error.

The Power of a Test - is the probability that the test will reject the null hypothesis when the null hypothesis is false assuming the null is true. Power $=1-\beta$

If you increase	Type I error	Type II error	Power
α	Increases	Decreases	Increases
n	Same	Decreases	Increases
$\left(\mu_{0}-\mu_{\mathrm{a}}\right)$	Same	Decreases	Increases

$\chi 2$ Test - is used to test counts of categorical data.
Types
-Goodness of Fit (univariate)
-Independence (bivariate)
-Homogeneity (univariate 2 (or more) samples)
$\chi 2$ distribution - All curves are skewed right, every df has a different curve, and as the degrees of freedom increase the χ^{2} curve becomes more normal.

Goodness of Fit - is for univariate categorical data from a single sample. Does the observed count "fit" what we expect. Must use list to perform, $\mathrm{df}=$ number of the categories -1 , use $\chi 2 \operatorname{cdf}(\chi 2, \infty, \mathrm{df})$ to calculate p -value

Independence - bivariate categorical data from one sample. Are the two variables independent or dependent? Use matrices to calculate

Homogeneity -single categorical variable from 2 (or more) samples. Are distributions homogeneous? Use matrices to calculate

For both $\chi 2$ tests of independence \& homogeneity:

$$
\text { Expected counts }=\frac{(\text { row total })(\text { column total })}{\text { grand total }} \& \mathrm{df}=(\mathrm{r}-1)(\mathrm{c}-1)
$$

Regression Model:

- X \& Y have a linear relationship where the true LSRL is $\mu \mathrm{y}=\alpha+\beta \mathrm{x}$
- The responses (y) are normally distributed for a given x -value.
- The standard deviation of the responses ($\sigma \mathrm{y}$) is the same for all values of x .
- S is the estimate for σy

Confidence Interval $b \pm t^{*} s_{b}$

Hypothesis Testing $t=\frac{b-\beta}{s_{b_{1}}}$
Assumptions:

Proportions z-procedures	Means t - procedures	Counts $\chi 2$ - procedures
One sample: - SRS from population - Can be approximated by normal distribution if $n(p) \& n(1-p)>10$ - Population size is at least 10 n	One sample: - SRS from population - Distribution is approximately normal - Given - Large sample size - Graph of data is approximately symmetrical and unimodal with no outliers	All types: - Reasonably random sample(s) - All expected counts > 5 - Must show expected counts
Two samples: - 2 independent SRS's from populations (or randomly assigned treatments) - Can be approximated by normal distribution if $n_{1}\left(p_{1}\right), n_{1}\left(1-p_{1}\right)$, $\mathrm{n}_{2} \mathrm{p}_{2}, \& \mathrm{n}_{2}\left(1-\mathrm{p}_{2}\right)>10$ - Population sizes are at least 10 n	Matched pairs: - SRS from population - Distribution of differences is approximately normal - Given - Large sample size - Graph of differences is approximately symmetrical and unimodal with no outliers	Bivariate Data: t - procedures on slope
		- SRS from population - There is linear relationship between $\mathrm{x} \& \mathrm{y}$. - Residual plot has no pattern. - The standard deviation of the responses is constant for all values
	Two samples: - 2 independent SRS's from populations (or randomly assigned treatments) - Distributions are approximately normal - Given - Large sample sizes - Graphs of data are approximately symmetrical and unimodal with no outliers	- Points are scattered evenly across the LSRL in the scatterplot. - The responses are approximately normally distributed. - Graph of residuals is approximately symmetrical \& unimodal with no outliers.

