		Name					
		Math 2 –	Simulation Lal	b			
We have several ways to ge	enerate randoi	m numbers:				2+3×	(4 ^B net
		(1)	80777	84395	69563		
			69273	72532	78340		8888
			72944	96463	63533		
	3	\subseteq	88606	61406	38757		
<u>Coins</u> <u>Dice</u>	Spinner	<u>Cards</u>	Random	Number Tabl	<u>es</u>	Calc	ulator
With a single coin – P(H) = _	≈	_ P(T) =	≈				
With a single die – P(2) =	≈	P(even) =	≈				
With the spinner – P(4) =	≈	P(prime) = _	≈				
With the cards – P(Face carc	d) =	_≈ P(he	art) =	_≈ P((5) =	_≈	
With the random number ta	ble – P(7) =	≈ P	e(even) = ≈	ະ P(mເ	Itiple of 3) =	≈≈	

Lebron is watching Stephen Curry, who has a 92.1% free throw percentage, prepare for his free throw shot and wants to predict his success with one of these methods.

Is a coin flip a good method? Why/why not?

What about a dice roll?

Could he use a deck of cards?

Would the random number table work?

Other ideas?

Lebron decided to use a dice roll and count rolls of 2, 3, 4, 5, or 6 as a made shot – P(2, 3, 4, 5, or 6) = $__$ = $__$. Here is his table to simulate how many Curry made in the game.

Sample	Number of	Percent of		
Size	"shots made"	"shots made"		
4	3	75%		
12	10	83.3%		
30	24	80%		
50	42	84%		

According to his simulation, will he demonstrate his free throw percentage?

Is this a good model of his situation? Why/why not?

Giannis Antetokoumpo has a free throw percentage of 72.3%, design a simulation for his success in a game. Describe that simulation, run it, then evaluate it.

Design	Data			Evaluation
	Sample Size	Number of "shots made"	Percent of "shots made"	

There is a new player to the NBA: Raymond Matkin, we do not know his free throw percentage, but Lebron wants to use a coin flip to simulate it. Does that seem reasonable, why or why not?