Name

Linear Regression Review

1. An emergency service wishes to see whether a relationship exists between the high outside temperature on a given day and the number of emergency calls it receives. They examine data from 10 randomly selected days last year. The data is as follows:

Temperature	74	82	88	67	93	99	101	78	85	90
No. of Calls	4	8	10	8	11	14	13	6	8	10

- a) Find the least squares regression line. State the equation.
- b) Interpret the slope.
- c) Interpret the y-intercept.
- d) Find and interpret the value of r^2 .

e) Create a residual plot on your calculator. What does this plot tell you about a linear model for this data? How do you know?

- f) Find and interpret the residual for 93°.
- g) What point represents the largest residual? What does that residual mean?
- 2. The decline of salmon fisheries along the Columbia River in Oregon has caused great concern among commercial and recreational fishermen. The paper "Feeding of Predaceous Fishes on Out-Migrating Juvenile Salmonids" gave the accompanying data on y = maximum size of salmonids consumed by a northern squaw fish and x = squawfish length, both in millimeters. The accompanying data is from MINITAB

Predictor	Coef	Stdev	t-ratio	p
Constant	-89.09	16.83	-5.29	0.000
length	0.72907	0.04778	15.26	0.000
s=12.56	R-sq	=96.3%		

- a) Write the least squared regression line equation.
- b) Interpret the slope in context of the problem.
- c) What is the correlation coefficient? Interpret this value.
- d) What value of maximum size would you predict for a squawfish whose length is 375 mm?
- e) What is the residual corresponding to the observation (375,165)? Interpret this value.
- f) What is the correlation coefficient to describe this relationship?

g) What proportion of observed variation in y can be attributed to the approximate linear relationship between the two variables?