Binary and

Journal:
 If you were to extend our
 numbering system
 to more digits, what digits would
 you use? Why those?

Hexadecimal
 Numbers

Objectives:

Content: I will be able to work with numbers from different numbering systems.
Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Check Homework

DECIMAL TO BINARY	
41	
30	
5	
10	
99	
123	
244	
13	
78	
143	
94	
58	
190	
202	
6	

BINARY TO DECIMAL	
1111	
1101	
100101	
10	
00111100	
100	
110	
11111101	
1000100	
100001	
11010	
10101011	
10011001	
1110111	
11111	

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Binary Numbers

- A binary (base-two) number is just like a decimal (base-ten) number, except that instead of ten possible digits (0...9), we only have two (0...1)
- 1510

hundreds place ones place

$\bigcap_{\text {QUESTION: What place value does this zero hold? }}^{111011101_{2}}$

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Hexadecimal

- It would be very inconvenient to write out a 64-bit address in binary:
0010100111010110111110001001011000010001110011011110000011160000
- Instead, we group each set of 4 bits 1111 together into a hexadecimal (base 16) digit:
- The digits are $0,1,2, \ldots, 9$, A (10), B(11) ..., E (14), F (15)

- ...which we write, by convention, with a "0x" preceding the number to indicate it's a heXadecimal number:
- 0x29D6F89611CDEOEO

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Representing Information

- Positive integers: Just use the binary number system
- Negative integers, letters, images, ... not so easy!
- There are many different ways to represent information
- Some are more efficient than others
- ... but once we've solved the representation problem, we can use that information without considering how it's represented... via

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Representing Integers

- Simplest idea ("ones' complement"):
- Use one bit for a "sign bit":
- 1 means negative, 0 means positive
- The other bits are "complemented" (flipped) in a negative number
- So, for example, +23 (in a 16 -bit word) is represented as: 0000000000010111
and -23 is represented as:
1111111111101000
- But there are two different ways to say "zero" (0000... and 1111...)
- It's tricky to do simple arithmetic operations like addition in the ones' complement notation
- This is solved by the twos' complement representation, but we won't go over that

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Floating Point Numbers

- Non-integers are a problem...
- Remember that any rational number can be represen fraction
- ...but we probably don't want to do this, since
- (a) we'd need to use two words for each number (i.e., the numerator and the denominator)
- (b) fractions are hard to manipulate (add, subtract, etc.)
- Irrational numbers can't be written down at all, of course

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Floating Point Numbers

- We have limited precision, since we can only represent 2^{32} different values in a 32-bit word
- 1/3 isn't exactly $1 / 3$ (let's try it on a calculator!)
- In general, we also lose precision (introduce errors) when we operate on floating point numbers
- You don't need to know the details of how "floating point" numbers are represented

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Representing Characters

-ASCII)epresentation: one byte [actually 7 bits...] == one letter $==$ an integer from 0-1 28

Deci	imal:														
0	nul	1	soh	2	stx	3	etx	4	eot	5	eng	6	ack	7	bel
8	bs	9	ht	10	nl	11	vt	12	np	13	cr	14	so	15	si
16	dle	17	dc1	18	dc2	19	dc3	20	dc 4	21	nak	22	syn	23	etb
24	can	25	em	26	sub	27	esc	28	fs	29	gs	30	rs	31	us
32	sp	33	$!$	34	"	35	\#	36	\$	37	\%	38	t	39	
40	$($	41)	42	*	43	+	44	,	45	-	46	-	47	/
48	0	49	1	50	2	51	3	52	4	53	5	54	6	55	7
56	8	57	9	58	:	59	;	60	$<$	61	=	62	>	63	?
64	¢	65	A	66	B	67	C	68	D	69	E	70	F	71	G
72	H	73	I	74	J	75	K	76	L	77	M	78	N	79	0
80	P	81	Q	82	R	83	S	84	T	85	U	86	V	87	W
88	X	89	\mathbf{Y}	90	Z	91	[92	\}	93]	94	\wedge	95	
96	*	97	a	98	b	99	c	100	d	101	e	102	f	103	$\overline{\mathbf{g}}$
104	h	105	i	106	j	107	k	108	1	109	m	110	n	111	-
112	P	113	g	114	r	115	s	116	t	117	u	118	v	119	w
120	\mathbf{x}	121	y	122	z	123	\{	124	I	125	\}	126	-	127	del

- No specific reason for this assignment of letters to integers!
- UNICODE is a popular 16-bit representation that supports accented characters like é

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Content: I will be able to work with numbers from different numbering systems.
Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

The Scale of Data 7.2 .2 milion

- Work with an elbow partner to answer these questions
- Computer Screen

$$
\begin{array}{r}
600 \times 400=240,000 \\
\times 3
\end{array}
$$

- Each pixel is represented by three bytes red, blue, green color values)
- A standard VGA screen i 600 pixels wide by 400 pixels high
- How many bits are needed to represent one VGA screen display?

$$
\frac{x 8}{5,760,000}
$$

CD $127,008,000$

$$
127,008,000
$$

$$
\begin{gathered}
44.100 \\
\times 180 \\
\hline 7.983 .000 \\
\times 16
\end{gathered}
$$

- There are 44,100 samples per second
- Each sample is represented by 16 bits
\square

$$
720,000
$$

- CDs are stored as digital samples
- How many bits are needed to represent one 3-minute song on a CD?

Objectives:
Content: I will be able to work with numbers from different numbering systems.
Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Representing instructions ${ }^{1001}$

- EVERYTHING in the computer is represented in binary, even the instructions.
- Create your own binary code to represent these equations: (NOT the answers, represent the equations themselves)
$9+4$
- 102

$$
3+6 \quad \text { HINT: }
$$

How many bits do you need to represent the data? They are whole numbers.
The largest number is \qquad and requires \qquad bits

How many different operations are there? \qquad Create a binary code for each operation.

Write each equation in binary.

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Homework

- Read the remainder of Chapter 1 in Blown To Bits (pages 13-17).
- Summarize by choosing one of each from the reading
- Key sentence
- Key phrase
- Key word

