9/10/18

Journal: If you were to extend our numbering system to more digits, what digits would you use? Why those?

Binary and Hexadecimal Numbers

Objectives:

Content: I will be able to work with numbers from different numbering systems.

Social: I will explain my reasoning to other people.

Check Homework

DECIMAL TO BINARY

41	
30	
5	
10	
99	
123	
244	
13	
78	
143	
94	
58	
190	
202	
6	

BINARY TO DECIMAL

1111	
1101	
100101	
10	
00111100	
100	
110	
11111101	
1000100	
100001	
11010	
10101011	
10011001	
1110111	
11111	

- Content: I will be able to work with numbers from different numbering systems.
- Social: I will explain my reasoning to other people.
- Language: I will use my words to explain my addition a nd calculation process to others in the class.

Binary Numbers

 A binary (base-two) number is just like a decimal (base-ten) number, except that instead of ten possible digits (0...9), we only have two (0...1)

- Content: I will be able to work with numbers from different numbering systems.
- Social: I will explain my reasoning to other people.
- Language: I will use my words to explain my addition a nd calculation process to others in the class.

Hexadecimal

AS90IFB16

hexadecimal

- Instead, we group each set of 4 bits together into a hexadecimal (base 16) digit:
 - The digits are 0, 1, 2, ..., 9, A (10), B (11), ..., E (14), F (15)

0010	1001	1101	0110	1111	1000	1001	0110	0001	0001	1100	1101	1110	0000	1110	0000
2	9	D	6	F	8	9	6	1	1	С	D	Е	0	Е	0

- ...which we write, by convention, with a "0x" preceding the number to indicate it's a heXadecimal number:
 - 0x29D6F89611CDE0E0

- Content: I will be able to work with numbers from different numbering systems.
- Social: I will explain my reasoning to other people.
- Language: I will use my words to explain my addition a nd calculation process to others in the class.

Representing Information

Positive integers: Just use the binary number system

- Negative integers, letters, images, ... not so easy!
 - There are many different ways to represent information
 - Some are more efficient than others
 - ... but once we've solved the representation problem, we can use that information without considering how it's represented... via

Abstraction

- Content: I will be able to work with numbers from different numbering systems.
- Social: I will explain my reasoning to other people.
- Language: I will use my words to explain my addition a nd calculation process to others in the class.

Representing Integers

- Simplest idea ("ones' complement"):
 - Use one bit for a "sign bit":
 - I means negative, 0 means positive
 - The other bits are "complemented" (flipped) in a negative number
 - So, for example, +23 (in a 16-bit word) is represented as: 000000000010111 and -23 is represented as: 111111111101000
 - But there are two different ways to say "zero" (0000... and 1111...)
 - It's tricky to do simple arithmetic operations like addition in the ones' complement notation
 - This is solved by the twos' complement representation, but we won't go over that

Objectives:

Content: I will be able to work with numbers from different numbering systems.

Social: I will explain my reasoning to other people.

Floating Point Numbers

- Non-integers are a problem...
- Remember that any rational number can be represented as a fraction
 - ...but we probably don't want to do this, since
 - (a) we'd need to use two words for each number (i.e., the numerator and the denominator)
 - (b) fractions are hard to manipulate (add, subtract, etc.)
- Irrational numbers can't be written down at all, of course

- Content: I will be able to work with numbers from different numbering systems.
- Social: I will explain my reasoning to other people.
- Language: I will use my words to explain my addition a nd calculation process to others in the class.

Floating Point Numbers

- We have *limited precision*, since we can only represent 2³² different values in a 32-bit word
 1/3 isn't exactly 1/3 (let's try it on a calculator!)
- In general, we also lose precision (introduce errors) when we operate on floating point numbers
- You don't need to know the details of how "floating point" numbers are represented

- Content: I will be able to work with numbers from different numbering systems.
- Social: I will explain my reasoning to other people.
- Language: I will use my words to explain my addition a nd calculation process to others in the class.

Representing Characters

ASCII representation: one byte [actually 7 bits...] == one letter == an integer from 0-128

Dec	imal:														
0	nul	1	soh	2	stx	3	etx	4	eot	5	enq	6	ack	7	bel
8	bs	9	ht	10	nl	11	vt	12	np	13	cr	14	80	15	si
16	dle	17	dc1	18	dc2	19	dc3	20	dc4	21	nak	22	syn	23	etb
24	can	25	em	26	sub	27	esc	28	fs	29	gs	30	rs	31	us
32	sp	33	1	34	•	35	#	36	\$	37	8	38	8	39	•
40	(41)	42	*	43	+	44	,	45	-	46	•	47	/
48	0	49	1	50	2	51	3	52	4	53	5	54	6	55	7
56	8	57	9	58	:	59	;	60	۷	61		62	٨	63	?
64	e	65	A	66	В	67	C	68	D	69	10	70	F	71	G
72	H	73	I	74	J	75	ĸ	76	L	77	М	78	N	79	0
80	P	81	Q	82	R	83	S	84	T	85	U	86	v	87	2
88	x	89	Y	90	2	91	[92	\	93]	94	^	95	_
96		97	a	98	ь	99	C	100	d	101	e	102	f	103	g
104	h	105	i	106	j	107	k	108	1	109	m	110	n	111	•
112	P	113	q	114	r	115	8	116	t	117	u	118	v	119	W
120	ж	121	У	122	14	123	{	124		125	}	126	-	127	del

- No specific reason for this assignment of letters to integers!
- UNICODE is a popular 16-bit representation that supports accented characters like é

Objectives:

Content: I will be able to work with numbers from different numbering systems.

Social: I will explain my reasoning to other people.

- Content: I will be able to work with numbers from different numbering systems.
- Social: I will explain my reasoning to other people.
- Language: I will use my words to explain my addition a nd calculation process to others in the class.

Objectives:

Content: I will be able to work with numbers from different numbering systems.

Social: I will explain my reasoning to other people.

Representing instructions 1001

- EVERYTHING in the computer is represented in binary, even the instructions.
- Create your own binary code to represent these equations: (NOT the answers, represent the equations themselves)

HINT:

How many bits do you need to represent the data? They are whole numbers. The langest number is

The largest number is _____ and requires _____ bits

110

How many different operations are there? _____ Create a binary code for each operation.

Write each equation in binary.

Objectives:

Content: I will be able to work with numbers from different numbering systems.

Social: I will explain my reasoning to other people.

Homework

- Read the remainder of Chapter 1 in Blown To Bits (pages 13-17).
- Summarize by choosing one of each from the reading
 - Key sentence
 - Key phrase
 - Key word

