Journal: Explain the process of "carrying" a digit when adding. For example, when we do $26+99$, why do we "carry the 1 to the tens place, why do we "carry" a 1 to the hundreds place?
numberevprosesion numbers
© circuit
Bits just \qquad eneresents Binajury
value complement byte base point amary epresentation intomaion Boolean ${ }^{\text {using }}$ E two

From the Bottom Up: It's All Just Bits

CS Matters in Maryland CS Principles

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Just Bits

- Inside the computer, all information is stored as bits - A "bit" is a single unit of information - Each "bit" is set to either zero or one
- How do we get complex systems like Google, Matlab, and our cell phone apps?

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

What's a Bit Between Friends?

- Bits can be represented in many different ways
- They are all equivalent abstractions

Magnetic core memory
(each core represents one bit) wikipedia.com

Light signals
delightlylinux.files.wordpress.com

Electrical voltages babbage.cs.qc.edu

Mechanical implementation of the OR function
Mechanical devices
Hillis, The Pattern on the Stone

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

The Jacquard Loom

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Storing Bits

- How are these "bits" stored in modern computers?
- A bit is just an electrical signal or voltage (by convention: "low voltage" = 0; "high voltage" = 1)
- A circuit called a "flip-flop" can store a single bit
- A flip-flop can be "set" (using an electrical signal) to either 0 or 1
- The flip-flop will hold that value until it receives a new signal telling it to change
- Bits can be operated on using gates (which "compute" a function of two or more bits)

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Orders of Magnitude

- One 0/1) ("no/yes") "bit" is the basic unit of memory
- Eight (2^{3}) bits = one byte
- 1,024 (2 ${ }^{10}$) bytes = one kilobyte (1 K$)^{*}$
- 1,024K = 1,048,576 (220 bytes) = one megabyte (1 M)
- 1,024K (230 bytes) = one gigabyte (1G)
- 1,024 (240 bytes) = one terabyte (1T)
- 1,024 (2 2^{50} bytes) = one petabyte (1P)
- ... 2^{80} bytes = one yottabyte (1Y?)

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Scaling Up Memory

-Computer chip:

- Many (millions) of circuits
- Etched onto a silicon wafer using VLSI (Very Large-Scale Integration) technology
- Lots of flip-flops or DRAM devices == memory chip

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Scaling Up Memory

- Each byte has an address (and we use binary numbers to represent those addresses...)
- An address is represented using a word, which is typically either;
- 2 bytes (16 bits) -- earliest PCs
- Only 64 K combinations \Rightarrow memory is limited to $64 \mathrm{~K}(65,535)$ bytes!
- 4 bytes (32 bits) -- first Pentium chips
- This brings us up to $4 G(4,294,967,295)$ bytes of memory!
- 8 bytes (64 bits) -- modern Pentium chips
- Up to 16.8 million terabytes (that's 18,446,744,073,709,551,615 bytes!)

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Storing Information

- One bit can't tell you much...; (just \&
possible values)
- Usually we group 8 bits together into one "byte"

$$
2.2 .2 \cdot 2
$$

- QUESTION: How many possible values (combinations) are there for one byte?

$$
\begin{aligned}
& 1=2 \\
& 2=4 \\
& 3=8 \\
& 4=2^{4}=16
\end{aligned}
$$

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Storing Information

- A byte can just be thought of as an 8-digit binary (base 2) number
- Michael Littman's octopus counting video [3 min]
- Low-order or least significant’'Bit == ones place
- Next bit would be "10s place" in base 10 -- what about base 2?
- High-order bit or most significant bite in a byte == ?? place

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

- Binary \rightarrow decimal: multiply each digit by its place value and add the results
- Decimal \rightarrow binary: 01101011

- Find the largest power of two that is less than or equal to the decimal number

- Put a one in that place column in the binary number
- Add spaces for the smaller binary digits
- E.g., if the largest multiple of two that fits is 256, you would write:
- Find the next smallest multiple of two
- Put a one in that place column (and a zero in any columns you skipped)

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

EXERCISE: You try it!

- Write 97_{10} in binary

128
01100001

$$
2^{8}-1=255
$$

- Write 11001110_{2} in decimal

Practice with Binary

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

Homework

DECIMAL TO BINARY	
41	
30	
5	
10	
99	
123	
244	
13	
78	
143	
94	
58	
202	
6	

BINARY TO	
1111	
1101	
100101	
10	
00111100	
100	
110	
11111101	
1000100	
100001	
11010	
10101011	
10011001	
1110111	
11111	

Objectives:

Content: I will be able to work with numbers from different numbering systems. Social: I will explain my reasoning to other people.
Language: I will use my words to explain my addition a nd calculation process to others in the class.

