

Journal: Explain the process of "carrying" a digit when adding. For example, when we do 26 + 99, why do we "carry the 1 to the tens place, why do we "carry" a 1 to the hundreds place?

From the Bottom Up: It's All Just Bits

CS Matters in Maryland CS Principles

Objectives:

Content: I will be able to work with numbers from different numbering systems.

Social: I will explain my reasoning to other people.

Just Bits

Inside the computer, all information is stored as bits

- A "bit" is a single unit of information
- Each "bit" is set to either zero or one
- How do we get complex systems like Google, Matlab, and our cell phone apps?

- Content: I will be able to work with numbers from different numbering systems.
- Social: I will explain my reasoning to other people.
- Language: I will use my words to explain my addition a nd calculation process to others in the class.

What's a Bit Between Friends?

- Bits can be represented in many different ways
- They are all equivalent abstractions

Magnetic core memory (each core represents one bit) wikipedia.com

Light signals delightlylinux.files.wordpress.com

From Computer Desktop Encyclopedia © 1998 The Computer Language Co. Inc.

Electrical voltages babbage.cs.qc.edu

Mechanical devices Hillis, *The Pattern on the Stone*

Objectives:

Content: I will be able to work with numbers from different numbering systems.

Social: I will explain my reasoning to other people.

The Jacquard Loom

Objectives:

Content: I will be able to work with numbers from different numbering systems.

Social: I will explain my reasoning to other people.

Storing Bits

- How are these "bits" stored in modern computers?
- A bit is just an electrical signal or voltage (by convention: "low voltage" = 0; "high voltage" = 1)
- A circuit called a "flip-flop" can store a single bit
 - A flip-flop can be "set" (using an electrical signal) to either 0 or 1
 - The flip-flop will hold that value until it receives a new signal telling it to change
- Bits can be operated on using gates (which "compute" a function of two or more bits)

- Content: I will be able to work with numbers from different numbering systems.
- Social: I will explain my reasoning to other people.
- Language: I will use my words to explain my addition a nd calculation process to others in the class.

Orders of Magnitude

- One 0/1 ("no/yes") "bit" is the basic unit of memory
 - Eight (2³) bits = one byte
 - 1,024 (2^{10}) bytes = one kilobyte (1K)*
 - 1,024K = 1,048,576 (2²⁰ bytes) = one megabyte (1M)
 - 1,024K (2³⁰ bytes) = one gigabyte (1G)
 - 1,024 (2^{40} bytes) = one terabyte (1T)
 - 1,024 (2^{50} bytes) = one petabyte (1P)
 - ... 2⁸⁰ bytes = one yottabyte (1Y?)

Objectives:

Content: I will be able to work with numbers from different numbering systems.

Social: I will explain my reasoning to other people.

Scaling Up Memory

- Computer *chip*:
 - Many (millions) of circuits
 - Etched onto a silicon wafer using VLSI (Very Large-Scale Integration) technology
 - Lots of flip-flops or DRAM devices == memory chip

- Content: I will be able to work with numbers from different numbering systems.
- Social: I will explain my reasoning to other people.
- Language: I will use my words to explain my addition a nd calculation process to others in the class.

Scaling Up Memory

- Each byte has an address (and we use binary numbers to represent those addresses...)
 - An address is represented using a word, which is typically either;
 - 2 bytes (16 bits) -- earliest PCs
 - Only 64K combinations \Rightarrow memory is limited to 64K (65,535) bytes!
 - 4 bytes (32 bits) -- first Pentium chips
 - This brings us up to 4G (4,294,967,295) bytes of memory!
 - 8 bytes (64 bits) -- modern Pentium chips
 - Up to 16.8 million terabytes (that's 18,446,744,073,709,551,615 bytes!)

Objectives:

Content: I will be able to work with numbers from different numbering systems.

Social: I will explain my reasoning to other people.

Storing Information

- One bit can't tell you much..., (just 2 possible values)
- Usually we group 8 bits together into one "byte" 2222
- QUESTION: How many possible values (combinations) are there for one byte?

|= 2 2= 4 3= 8 4= 2⁴= 16

Objectives:

0

 \mathcal{O}

9

 7^3

- Content: I will be able to work with numbers from different numbering systems.
- Social: I will explain my reasoning to other people.
- Language: I will use my words to explain my addition a nd calculation process to others in the class.

Storing Information

- A byte can just be thought of as an 8-digit binary (base 2) number
 - Michael Littman's octopus counting video [3 min]
- Low-order or least significant bit == ones place
 - Next bit would be "10s place" in base 10 -- what about base 2?
- High-order bit or most significant bite in a byte == ?? place

- Content: I will be able to work with numbers from different numbering systems.
- Social: I will explain my reasoning to other people.
- Language: I will use my words to explain my addition a nd calculation process to others in the class.

Conversions

- Binary → decimal: multiply each digit by its place value and add the results
- $\blacksquare \text{ Decimal } \Rightarrow \text{ binary: } \bigcirc 1101011$
 - Find the largest power of two that is less than or equal to the decimal number
 - Put a one in that place column in the binary number
 - Add spaces for the smaller binary digits
 - E.g., if the largest multiple of two that fits is 256, you would write:
 - Find the next smallest multiple of two
 - Put a one in that place column (and a zero in any columns you skipped)

Objectives:

Content: I will be able to work with numbers from different numbering systems.

Social: I will explain my reasoning to other people.

Objectives:

Content: I will be able to work with numbers from different numbering systems.

Social: I will explain my reasoning to other people.

Practice with Binary

Objectives:

Content: I will be able to work with numbers from different numbering systems.

Social: I will explain my reasoning to other people.

DECIMAL	Т	0	BINARY
41			
30			
5			
10			
99			
123			
244			
13			
78			
143			
94			
58			
190			
202			
6			

1111	
1101	
100101	
10	
00111100	
100	
110	
11111101	
1000100	
100001	
11010	
10101011	
10011001	
1110111	
11111	

BINARY TO DECIMAL

Objectives:

Content: I will be able to work with numbers from different numbering systems.

Social: I will explain my reasoning to other people.