Overview - what are inference procedures?

- One sample z-interval
- One sample t-interval
- Two sample z-interval for $p_{1}-p_{2}$
- Two sample t-interval for $\mu_{1}-\mu_{2}$
- Paired t-interval for μ_{1-2}
- t-interval for least squares regression line

- One sample z-test for p
- One sample t-test for means
- Two sample z-test for $p_{1}-p_{2}$
- Two sample t-test for $\mu_{1}-\mu_{2}$
- Paired t-test for μ_{1-2}
- t-test for least squared regression line
- X^{2} goodness-of-fit test
- X^{2} test for homogeneity
- X^{2} test for
association/independence

One sample z-interval

- When?
- Proportions (or a known standard deviation)
- Looking for a proportion of ONE variable within a group
- Conditions?
- Random (or representative) sample
- Less than 10% of the overall population
- At least 10 expected successes and failures
- Example
- What percent of students at your school have a Facebook account?

One sample z-test

- When?
- Proportions (or a known standard deviation)
- Comparing a proportion of ONE variable within ONE group
- Conditions?
- Random (or representative) sample
- Less than 10\% of the overall population
- At least 10 expected successes and failures
- Example
- A recent study said that 70\% of high school students bring a lunch to school. Is that true for students at your school?

One sample t-interval

- When?
- Quantitative Data (units)
- Looking for an estimate for one group
- Conditions?
- Random (or representative) sample
- Less than 10% of population
- At least 30 in the sample
- Nearly normal distribution
- Example
- How long do teens typically spend brushing their teeth?

One sample t-test

- When?
- Quantitative Data (units)
- Comparing to an estimate for one group
- Conditions?
- Random (or representative) sample
- Less than 10% of population
- At least 30 in the sample
- Nearly normal distribution
- Example
- According to a recent survey, a typical teenager has 38 contacts stored in his/her phone. Is this true at your school?

Two sample z-interval for $p_{1}-p_{2}$

- When?
- Proportions (or known standard deviation)
- Looking for an estimate of difference in percent between two groups
-Conditions?
- EACH group random or representative
- EACH group no more than I0\% of entire population
- EACH group expected at least 10 successes and 10 failures
- Groups independent of each other
- Example
- What is the approximate difference in graduation rate between students of color and white students?

Two sample z-test for $p_{1}-p_{2}$

- When?
- Proportions (or known standard deviation)
- Determining if there is a difference (or what kind of difference) between two groups
- Conditions?
- EACH group random or representative
- EACH group no more than 10% of entire population
- EACH group expected at least 10 successes and 10 failures
- Groups independent of each other
- Example
- Who is more likely to own an iPhone, middle school girls or middle school boys?

Two sample t-interval for $\mu_{I}-\mu_{2}$

-When?

- Quantitative Data - units
- Comparing the difference between two independent groups (may or may not have different quantities)
- Conditions?
- BOTH groups Random (or representative) of population
- BOTH groups less than io\% of population(s)
- At least 30 in sample (each)
- BOTH groups - nearly normal distribution
- Independent Groups
- Example
- What is the approximate grade difference between AP Stats students in the 2017-18 school year with this school year?

Two sample t -test for $\mu_{1}-\mu_{2}$

- When?
- Quantitative Data - units
- Testing the difference between two independent groups (may or may not have different quantities)
- Conditions?
- BOTH groups Random (or representative) of population
- BOTH groups less than 10% of population(s)
- At least 30 in sample
- BOTH groups - nearly normal distribution
- Independent groups
- Example
- Do Duracell batteries last longer than Eveready?

Paired t-interval for μ_{1-2}

- When?
- Quantitative Data - units
- Connected groups (before/after, siblings, etc.) making really one group
- Determining the difference between data sets
- Conditions?
- Random (or representative) group
- Less than 10% of total population
- At least 30 in group
- Nearly normal distribution
- Example
- How do GPA's change between junior year and senior year? 50 students were chosen and their $11^{\text {th }}$ grade and $12^{\text {th }}$ grade GPA's were compared.

Paired t-test for μ_{1-2}

-When?

- Quantitative Data - units
- Connected groups (before/after, siblings, etc.) making really one group
- Testing the difference between data sets
-Conditions?
- Random (or representative) group
- Less than 10% of total population
- At least 30 in group
- Nearly normal distribution

- Example
- Does participation in a tutoring program make a difference. Students' success rate was compared before and after participation in a tutoring program.

t-interval for least squares regression line

- When?
- A set of two different quantitative values for each subject
- Determining what the relationship is between those variables
- Conditions?
- Quantitative Data
- Scatterplot is straight enough
- No pattern in the residuals
- No strong outliers
- Nearly normal distribution of residuals

- Example
- Approximately what slope describes the relationship between hours of sleep and salary for adults in their 20's?

t-test for least squared regression line

- When?
- A set of two different quantitative values for each subject
- Testing if there is a relationship is between those varíables
- Conditions?
- Quantítatíve Data
- Scatterplot is straight enough
- No pattern in the residuals
- No strong outliers
- Nearly normal distribution of residuals

- Example
- Is there a relationship between the age of a students' car and the mileage reading on the odometer?

X^{2} goodness-of-fit test

- When?
- Categorical Data (counts in each category)
- One set of categories (color, race, flavor, etc)
- Conditions?
- Counted Data
- Expected 5 in each category
- Random (representative) sample
- Less than 10% of entire population
- Example
- Are flavors equally distributed in skittles?
X^{2} test for homogeneity
- When?
- Categorical Data (counts in each category)
- Two sets of categories (color, race, flavor, etc)
- Asking about "proportional", or "distribution"
- Conditions?
- Counted Data
- Expected 5 in each category
- Random (representative) sample
- Less than 10% of entire population
- Example
- Is involvement in various sports (basketball, baseball, wrestling, etc.) proportional to ethnicity in area high schools??

X^{2} test for association/independence

-When?

- Categorical Data (counts in each category)
- Two sets of categories (color, race, flavor, etc)
- Asking about "relationship", "association", or "independent"
- Conditions?
- Counted Data
- Expected 5 in each category
- Random (representative) sample
- Less than 10% of entire population

- Example
- Is there a relationship between students' favorite academic subject and preferred music type?
http://bit.ly/InfProc

