Overview – what are inference procedures?

- One sample z-interval
- One sample t-interval
- Two sample z-interval for $p_1 p_2$
- Two sample t-interval for $\mu_1 \mu_2$
- Paired t-interval for μ_{1-2}
- t-interval for least squares regression line

- One sample z-test for p
- One sample t-test for means
- Two sample z-test for p_1 - p_2
- Two sample t-test for μ_1 - μ_2
- Paired t-test for μ_{1-2}
- t-test for least squared regression line
- X² goodness-of-fit test
- X² test for homogeneity
- X² test for association/independence

One sample z-interval

- When?
 - Proportions (or a known standard deviation)
 - Looking for a proportion of ONE variable within a group
- Conditions?
 - Random (or representative) sample
 - Less than 10% of the overall population
 - At least 10 expected successes and failures
- Example
 - What percent of students at your school have a Facebook account?

One sample z-test

- When?
 - Proportions (or a known standard deviation)
 - Comparing a proportion of ONE variable within ONE group
- Conditions?
 - Random (or representative) sample
 - Less than 10% of the overall population
 - At least 10 expected successes and failures

• Example

 A recent study said that 70% of high school students bring a lunch to school. Is that true for students at your school?

One sample t-interval

- When?
 - Quantitative Data (units)
 - Looking for an estimate for one group
- Conditions?
 - Random (or representative) sample
 - Less than 10% of population
 - At least 30 in the sample
 - Nearly normal distribution
- Example
 - How long do teens typically spend brushing their teeth?

One sample t-test

- When?
 - Quantitative Data (units)
 - Comparing to an estimate for one group
- Conditions?
 - Random (or representative) sample
 - Less than 10% of population
 - At least 30 in the sample
 - Nearly normal distribution
- Example
 - According to a recent survey, a typical teenager has 38 contacts stored in his/her phone. Is this true at your school?

Two sample z-interval for $p_1 - p_2$

- When?
 - Proportions (or known standard deviation)
 - Looking for an estimate of difference in percent between two groups
- Conditions?
 - EACH group random or representative
 - EACH group no more than 10% of entire population
 - EACH group expected at least 10 successes and 10 failures
 - Groups independent of each other
- Example
 - What is the approximate difference in graduation rate between students of color and white students?

Two sample z-test for $p_1 - p_2$

- When?
 - Proportions (or known standard deviation)
 - Determining if there is a difference (or what kind of difference) between two groups
- Conditions?
 - EACH group random or representative
 - EACH group no more than 10% of entire population
 - EACH group expected at least 10 successes and 10 failures
 - Groups independent of each other
- Example
 - Who is more likely to own an iPhone, middle school girls or middle school boys?

Two sample t-interval for μ_{I} - μ_{2}

- When?
 - Quantitative Data units
 - Comparing the difference between two independent groups (may or may not have different quantities)
- Conditions?
 - BOTH groups Random (or representative) of population
 - BOTH groups less than 10% of population(s)
 - At least 30 in sample (each)
 - BOTH groups nearly normal distribution
 - Independent Groups
- Example
 - What is the approximate grade difference between AP Stats students in the 2017-18 school year with this school year?

Two sample t-test for $\mu_1 - \mu_2$

- When?
 - Quantitative Data units
 - Testing the difference between two independent groups (may or may not have different quantities)
- Conditions?
 - BOTH groups Random (or representative) of population
 - BOTH groups less than 10% of population(s)
 - At least 30 in sample
 - BOTH groups nearly normal distribution
 - Independent groups
- Example
 - Do Duracell batteries last longer than Eveready?

Paired t-interval for μ_{1-2}

- When?
 - Quantitative Data units
 - Connected groups (before/after, siblings, etc.) making really one group
 - Determining the difference between data sets
- Conditions?
 - Random (or representative) group
 - Less than 10% of total population
 - At least 30 in group
 - Nearly normal distribution
- Example
 - How do GPA's change between junior year and senior year? 50 students were chosen and their 11th grade and 12th grade GPA's were compared.

Paired t-test for μ_{1-2}

- When?
 - Quantitative Data units
 - Connected groups (before/after, siblings, etc.) making really one group
 - Testing the difference between data sets
- Conditions?
 - Random (or representative) group
 - Less than 10% of total population
 - At least 30 in group
 - Nearly normal distribution
- Example
 - Does participation in a tutoring program make a difference. Students' success rate was compared before and after participation in a tutoring program.

100

t-interval for least squares regression line

- When?
 - A set of two different quantitative values for each subject
 - Determining what the relationship is between those variables
- Conditions?
 - Quantitative Data
 - Scatterplot is straight enough
 - No pattern in the residuals
 - No strong outliers
 - Nearly normal distribution of residuals
- Example
 - Approximately what slope describes the relationship between hours of sleep and salary for adults in their 20's?

t-test for least squared regression line

- When?
 - A set of two different quantitative values for each subject
 - Testing if there is a relationship is between those variables
- Conditions?
 - Quantitative Data
 - Scatterplot is straight enough
 - No pattern in the residuals
 - No strong outliers
 - Nearly normal distribution of residuals
- Example
 - Is there a relationship between the age of a students' car and the mileage reading on the odometer?

HOURS

X² goodness-of-fit test

- When?
 - Categorical Data (counts in each category)
 - One set of categories (color, race, flavor, etc)
- Conditions?
 - Counted Data
 - Expected 5 in each category
 - Random (representative) sample
 - Less than 10% of entire population
- Example
 - Are flavors equally distributed in skittles?

X^2 test for homogeneity

- When?
 - Categorical Data (counts in each category)
 - Two sets of categories (color, race, flavor, etc)

grand total

- Asking about "proportional" or "distribution"
- Conditions?
 - Counted Data
 - Expected 5 in each category
 - Random (representative) sample
 - Less than 10% of entire population
- Example
 - Is involvement in various sports (basketban, baseball, wrestling, etc.) proportional to ethnicity in area high schools??

X² test for association/independence

- When?
 - Categorical Data (counts in each category)
 - Two sets of categories (color, race, flavor, etc)
 - Asking about "relationship", "association", or "independent"
- Conditions?
 - Counted Data
 - Expected 5 in each category
 - Random (representative) sample
 - Less than 10% of entire population
- Example
 - Is there a relationship between students' favorite academic subject and preferred music type?

055

http://bit.ly/InfProc

what's your choice