$\qquad$

## AP Stats - Chapter 19

## Standard Error

The true proportion of the population is represented by $p$, the problem is that often we do not know this, so the standard deviation: $\sqrt{\frac{p q}{n}}$ is only an approximation. So we often use standard error instead which is calculated frompuration from the observed proport on, $\hat{p}$ and is calculated by the formula: $\sqrt{\frac{\hat{p} \hat{q}}{n}}$.
For the following problems, calculate or identify $\hat{p}$ and the standard error, make sure to include labels.

1. A consumer group hoping to assess customer experiences with auto dealers serve s 167 people who recently bought new cars; $3 \%$ ot them expressed dissatisfaction with the salesperson.

2. What percent of college students have cell phones 2883 students were asked as they entered a football stadium, and 243 said they had phones with them.

$\hat{p}=\frac{243}{2883}=0.084$
$\hat{q}=\frac{2640}{2883}=0.916$
3. 240 potato plants in a field in Main are randomly checked, and only 7 show signs of blight. How severe is the blight problem for the US potato industry?

$$
S E=0.010
$$

4. 12 of the 309 employees of a small company suffered an injury on the job last year. What can the company expect in future years?

$$
S E=0.010
$$

Confidence intervals
A confidence interval is essentially expresses an interval and how confident we are that the true (population) proportion falls within that interval. In other words, if a $95 \%$ confidence interval is 0.341 and 0.427 , we are confident that $95 \%$ of all random samples will yield intervals that include the true proportion. We use our normal distribution to approximate these as illustrated in the picture.


To calculate a confidence interval, we need to first calculate a critical value, or a critical $z$, notated $b y z^{*}$. his is the $z$-score that places us in the center of the confidence interval. One of the most common is for $95 \%$ confidence:


Since the middle 95\% leaves $2.5 \%$ or 0.025 on either side, we find the z -score for 0.025 with either the table or with the calculator using the command invNorm(0.025). The critical z for $95 \%$ confidence is 1.96. $=95^{\circ} / 0$
Calculate the critical $z$ for the following common confidence intervals

| 2 | .00 | . 01 | . 02 | . 09 | . 04 | . 05 | . 04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $-3.4$ | .0003 | .0003 | . 00003 | . 01003 | . 00009 | . 01003 | . 00003 |
| $-3.3$ | . 0006 | .0006 | . 00005 | . 00004 | .0004 | .0004 | . 00004 |
| -32 | . 00007 | .0007 | . 0006 | .0006 | . 00006 | . 0006 | . 0006 |
| $-3.1$ | , 00010 | ,0000 | S6000 | (5000) | , 0008 | . 0008 | . 0008 |
| $h=3.0$ | .0013 | . 0013 | . 01013 | . 0012 | .0012 | . 0 OH11 | . 0011 |
| $7-2.9$ | .0019 | . 0018 | . 01018 | . 01017 | . 0 KHis | . CHH 13 | . 0015 |
| -2.8 | . 0006 | . 0005 | .0024 | .0023 | . 00123 | .0022 | . 0021 |
| $-2.7$ | . 00035 | . 00034 | .0033 | . 0032 | . 0031 | . 0030 | . 0029 |
| $-2.6$ | , 0047 | . 0045 | . 5044 | S0443 | . 0041 | , 6040 | . 00999 |
| -2.5 | . 00042 | .00000 | -005 | .0057 | A005 | .0054 | . 00002 |
| -2.4 | . 0062 | .0080 | . 0078 | . 0075 | . 0073 | . 0071 | . 0040 |
| $-2.3$ | . 0107 | . 0104 | . 0102 | . 0098 | . 0036 | .0034 | . 0001 |
| $-2.2$ | . 0139 | . 0136 | . 0132 | .0129 | . 0125 | . 0122 | . 0119 |
| $-2.1$ | . 0179 | . 0174 | . 0176 | . 0166 | . 0162 | . 0168 | . 0154 |
| $-2.0$ | . 0228 | . 0222 | . 0217 | . 0212 | .0207 | . 0202 |  |
| -1.9 | . 02887 | .0081 | . 0274 | . 02688 | . 02682 | . 0256 |  |
| $-18$ | .0350 | .0651 | . 0344 | . 1336 | .0329 | . 1322 |  |

(these would be EXCELLENT to memorize):

3. $98 \%-z^{*}=2.326$
4. $99.7 \%-z^{*}=2967$

In a confidence interval the center, or mean, of the interval is $\hat{p}$, the observed proportion. The margin of erro is the interval on either side of $\hat{p}$. It is calculated by multiplying the critical $z$ by the standard error. This is represented by the formulas:


Calculate tho mandingind the following problems and the given confidence intervals:
$1.95 \%$ confidence. A consumer group hoping to assess customer experiences with auto dealers surveys 167 people who recently bought new cars; $3 \%$ of them expressed dissatisfaction with the salesperson.
$=0.025$
2. $90 \%$ confidence: What percent of college students have cell phones? 2883 students were asked as they entered a football stadium, and 243 said they had phones with them.
$M E=0.0082$
3. $96 \%$ confidence: 240 potato plants in a field in Main are randomly checked, and only 7 show signs of blight. How severe is the blight problem for the US potato industry?

$$
\text { ME }=0.020
$$

4. $98 \%$ confidence: 12 of the 309 employees of a small company suffered an injury on the job last year. What can the company expect in future years?

$$
M E=0.023
$$

## Confidence Interval:

The confidence interval is calculated by adding and subtracting the margin of error from the observed proportion, forming an interval in which the true proportion is most likely located.
For example let us construct a 95\% confidence interval for the following. In January 2007 Consumer Reports published their study of bacterial contamination of chicken sold in the United States. They purchased 525 broiler chickens from various kinds of food stores in 23 states and tested them for types of bacteria that cause food-borne illnesses. Laboratory results indicated that $83 \%$ of these chickens were infected with campylobacyer.
Step 1: Calculate the standard error:
$S E=\sqrt{\frac{\hat{p} \hat{q}}{n}}=\sqrt{\frac{0.83 \times 0.17}{525}}=0.0164$
Step 2: Determine the critical $z\left(z^{*}\right)$ :
for $95 \%$ confidence the critical $z$ is 1.96 as calculated earlier

## Step 3: Calculate the margin of error:

$M E=z^{*} \times S E=1.96 \times 0.0164=0.0321$
Step 4: Add and subtract the margin of error to and from the observed proportion ( $\widehat{\boldsymbol{p}}$ ):
$0.83-0.0321=0.7979$
$0.83+0.0321=0.8621$
Conclusion: $\operatorname{con}^{2}$ de
We are $95 \%$ that the true proportion of chickens infected with campylobacyer is between 0.798 and 0.862
Calculate the following confidence intervals:

1. A consumer group hoping to assess customer experiences with auto dealers" surveys 167 people who recently bought new cars $3 \%$ f them expressed dissatisfaction with the salesperson. Construct a $95 \%$ confidence interval

$$
\begin{aligned}
& \text { Conan the sure proportion of customers who a re dissatisfied with the salesperson. } \\
& 0.03-0.025=0.005 \text { we are } 95 \% \text { confident that } \\
& 0.03+0.025=0.055 \text { of customers who are dissatisfica }
\end{aligned}
$$

2. What percent of college students have cell phones? 2883 students were asked as they entered a football stadium, and 243 said they had phones with them. Construct a $90 \%$ confidence interval to estimate the true proportion of students with cell phones.
3. 240 potato plants in a field in Main are randomly checked, and only 7 show signs of blight. How severe is the blight problem for the US potato industry? Construct a $96 \%$ confidence interval to describe this problem.
4. 12 of the 309 employees of a small company suffered an injury on the job last year. Construct a $98 \%$ confidence interval of what can the company expect in future years?
