

Going on a Bear Hunt
\qquad

Step 1: Separate and count the m \& m's you were given - complete the following table (you can eat the red ones, just count the orange, green, yellow $\&$ brown)

Color	Red	Blue	Orange	Green	Yellow	Brown	TOTAL
Count							
Percent of total							

Step 2: M \& M's advertises the following distribution: 24% cyan blue, 20% orange, 16% green, 14% bright yellow, 13% red, 13% brown. Is there statistical evidence that our $m \& m$'s follow that distribution? Demonstrate your test.

Step 3: The Hunt...
Document how many of each you found:

Color	Orange	Blue	Green	Brown	TOTAL
Count					
Percent of total					

Step 4: Compare the proportion you found to the expected proportions. What are the ways you can compare - perform whatever test or calculations you need to. Explain what you are doing.

Step 5: Follow-up questions

1. How did your outside bear hunt proportions compare to your expected? Why do you think that happened?
2. What type of bias happened? How could it have been prevented (if at all)?
3. With the bias introduced, what can I do with my sample to remove it? How would you replicate this to remove the bias (what kind of sampling techniques might help)?
