Thesday, August 21, 2018

- Warm-up
- Copy and complete the following Contingency Table df AP scores fromivu 2016 by calculating the marginal distributions (totals):

iff iv		Grade					TOTAL
		5	4	3	2	1	
苋	Calculus BC	76,486	53,467	53,533	30,017	94,712	
年	Statistics	29,647	44,884	51,367	32,120	48,565	
	TOTAL						

- More with contingency tables and graphs

$$
\forall r \in R, \quad r=P_{1} \cdots P_{x}, P_{i} \in R \text { are isweduet }
$$

 graphical representation.

- Social Objective: I will work with my group m\&mbers to analyze data ahd make it easier ito understand.
o Language Objective: I will read questions carefully so as to analyze data effectively.
- Essential Question What questions cam I answer using data that is arranged in a contingency table?

Check Homework: p 38 (11-13)

11. Causes of death 2004.
a) Yes, it is reasonable to assume that heart and respiratory disease caused approximately 33% of U.S. deaths in 2004, since there is no possibility for overlap. Each person could only have one cause of death.
b) Since the percentages listed add up to 66.4%, other causes must account for 33.6% of US deaths.
c) A pie chart is a good choice (with the inclusion of the "Other" category), since causes of US deaths represent parts of a whole. A bar chart would also be a good display.

Check Homework: p 38 (11-13)

12. Plane crashes.

a) As long as each plane crash had only one cause, it would be reasonable to assume that weather or mechanical failures were the causes of about 20% of crashes.
b) Since the percentages listed add up to 71%, other causes must account for 29% of non-military plane crashes.
c) A relative frequency bar chart is a good choice (with the inclusion of the "Not determined" category). A pie chart

Causes of Non-Military Plane Crashes
 might not be a good display, since several of the categories have nearly the same percentage. This makes it difficult to compare the percentages in a pie chart.
13. Oil spills 2006.

The bar chart shows that grounding is the most frequent cause of oil spillage for these 312 spills, and allows the reader to rank the other types as well. If being able to differentiate between these close counts is required, use the bar chart. The pie chart is also acceptable as a display, but it's difficult to tell whether, for example, there is a greater percentage of spills caused by grounding or hull failure. If you want to showcase the causes of oil spills as a fraction of all 312 spills, use the pie chart.

More with Contingency Tables

a) What percent of total scores were a 5 ? $\left(\frac{106,133}{514,798}\right) \approx 20.6 \%$
b) Overall, did a higher percentage of Call or Stats students score a 4? 48 $\approx 17.3 \%$ $\because 21.7 \%$
c) What percent of total 3 scores are Statistics? $\longrightarrow \frac{51,367}{104900}$
d) What percent of Statistics tests were a score of 1 ? $\approx 23.5 \%$

Content Objective: I will be able to use contingency tables to analyze data and prepare it for graphical representation.
Social Objective; I will work with my group members to analyze data and make it easier to understand. Language Objective: I will read questions carefully so as to analyze data effectively.

e) Calculate the marginal distribution of scores. $\rightarrow \div$ Grand total
\rightarrow of subtotals
f) Find the conditional distributions of 1's for each exam. of stats are $5^{\prime} \leq \frac{29,6417}{206,583}$
g) Based on the data given, do you believe score is independent of test (is one easier)? $\%$ of $5 \leq \frac{106,133}{514.798}=20.6 \%$
Content Objective: I will be able to use contingency tables to analyze data and prepare it for graphical representation.
Social Objective: I will work with my group members to analyze data and make it easier to understand.
Language Objective: I will read questions carefully so as to analyze data effectively.

Another one...

-What percent of those surveyed found it easiest to $\mathrm{N} \%$? make friends with the opposite sex?
-What percent of those surveyed were females?

- Calculate the marginal distribution of gender.
- Find the conditional distributions of friend types for females.
- Do you think "with whom it is easiest to make friends" is independent of gender? Why/why not?

Contingency table Practice

- Content Objective: I will be able to use contingency tables to analyze data and prepare it for graphical representation.
- Social Objective: I will work with my group members to analyze data and make it easier to understand.
- Language Objective: I will read questions carefully so as to analyze data effectively.
- Essential Question: What questions can I answer using data that is arranged in a contingency table?

The homework is page $41(28,29)$

