
•Warm-up
•Using the given 
data (lunch19)
•Create a scatterplot
•Find the regression 

line

•Unit Overview

•Linear Regression 
inference
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Time at the 
lunch table

Caloric 
intake

21.4 472

30.8 498

37.7 335

32.8 423

39.5 437

22.8 508

34.1 431

33.9 479

43.8 454

42.4 450

43.1 410

29.2 504

31.3 437

28.6 489

32.9 436

30.6 480

35.1 439

33.0 444

43.7 408



Objectives

Content Objective: I will use the linear 
regression analysis to create 
confidence intervals and perform 
hypothesis testing.

Social Objective: I will participate in 
class activities.

Language Objective: I will clearly 
write down formulas, conditions & 
assumptions, and other notes.
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Warm-up
•Create a scatterplot
•Find the regression line

Time at the 
lunch table

Caloric 
intake

21.4 472

30.8 498

37.7 335

32.8 423

39.5 437

22.8 508

34.1 431

33.9 479

43.8 454

42.4 450

43.1 410

29.2 504

31.3 437

28.6 489

32.9 436

30.6 480

35.1 439

33.0 444

43.7 408



How confident are 
you about the 
relationship?

•Confidence intervals about the slope…

•Hypothesis tests about the slope…

Slide 27 - 4



But first…
Assumptions and Conditions

• In Chapter 8 when we fit lines to 
data, we needed to check only the 
Straight Enough Condition. 

• Now, when we want to make 
inferences about the coefficients 
of the line, we’ll have to make 
more assumptions (and thus check 
more conditions).

• We need to be careful about the 
order in which we check 
conditions. If an initial assumption 
is not true, it makes no sense to 
check the later ones. 
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The data must be 
quantitative for this to 

make sense.
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Randomization Condition
Check the residual plot (part 1)—the residuals should appear to be randomly 

scattered.
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Check the residual plot again - the spread of the 
residuals should be uniform.
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Nearly Normal Condition

Check a histogram of the residuals. The distribution 
of the residuals should be unimodal and symmetric.
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We need to finish our lunch

• Confidence Interval

Slide 27 - 12



We need to finish our lunch

• Hypothesis test
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MINITAB output

• The dataset "Healthy Breakfast" contains, among other 
variables, the Consumer Reports ratings of 77 cereals and the 
number of grams of sugar contained in each serving. (Data 
source: Free publication available in many grocery stores. 
Dataset available through the Statlib Data and Story Library 
(DASL).) 

• Under the equation for the regression line, the output provides 
the least-squares estimate for the constant b0 and the slope b1. 
Since b1 is the coefficient of the explanatory variable "Sugars," it 
is listed under that name. The calculated standard deviations for 
the intercept and slope are provided in the second column. 

• We are comparing sugars and calories in each cereal.

Slide 27 - 14

http://lib.stat.cmu.edu/DASL/


MINITAB output
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Predictor Coef StDev T P 

Constant 80.81 56.04 1.44  0.187 

Calories 2.4715    0.4072  6.07 0.000 

S = 4.15116     R-Sq = 6.8%      R-Sq(adj) = 0.0% 



Homework
•Read chapter 27
•take notes on formulas
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An Example: Body Fat and Waist Size
• Our chapter example revolves around the relationship between % body 

fat and waist size (in inches). Here is a scatterplot of our data set:
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The Population and the Sample

• When we found a confidence interval for a mean, we could imagine 
a single, true underlying value for the mean.

• When we tested whether two means or two proportions were 
equal, we imagined a true underlying difference.

• What does it mean to do inference for regression?
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The Population and the Sample (cont.)

• We know better than to think that even if we knew every population 
value, the data would line up perfectly on a straight line.

• In our sample, there’s a whole distribution of %body fat for men with 
38-inch waists:
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The Population and the Sample (cont.)

• This is true at each waist size.

• We could depict the distribution of %body fat at different waist
sizes like this:
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The Population and the Sample (cont.)

• The model assumes that the means of the distributions of %body 
fat for each waist size fall along the line even though the individuals 
are scattered around it.

• The model is not a perfect description of how the variables are 
associated, but it may be useful.

• If we had all the values in the population, we could find the slope 
and intercept of the idealized regression line explicitly by using least 
squares.
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The Population and the Sample (cont.)

• We write the idealized line with Greek letters and consider the 
coefficients to be parameters: 0 is the intercept and 1 is the slope.

• Corresponding to our fitted line of               , we write

• Now, not all the individual y’s are at these means—some lie above 
the line and some below. Like all models, there are errors.  
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0 1
ŷ b bx 

0 1y x   



The Population and the Sample (cont.)

• Denote the errors by .  These errors are random, of course, and can 
be positive or negative.

• When we add error to the model, we can talk about individual y’s 
instead of means:

This equation is now true for each data point (since there is an  to soak 
up the deviation) and gives a value of y for each x.
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0 1
y x    



Assumptions and Conditions (cont.)

• If all four assumptions are true, the idealized regression model would 
look like this:

• At each value of x there is a distribution of y-values that follows a 
Normal model, and each of these Normal models is centered on the 
line and has the same standard deviation.
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Which Come First: 
the Conditions or the Residuals?

• There’s a catch in regression—the best way to check many of the 
conditions is with the residuals, but we get the residuals only after
we compute the regression model. 

• To compute the regression model, however, we should check the 
conditions.

• So we work in this order:
1. Make a scatterplot of the data to check the Straight Enough Condition. 

(If the relationship isn’t straight, try re-expressing the data. Or stop.)
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Which Come First: 
the Conditions or the Residuals? (cont.)

2. If the data are straight enough, fit a regression model and find the 
residuals, e, and predicted values,   . 

3. Make a scatterplot of the residuals against x or the predicted values. 

• This plot should have no pattern. Check in 
particular for any bend, any thickening (or 
thinning), or any outliers.

4. If the data are measured over time, plot the residuals against time to 
check for evidence of patterns that might suggest they are not 
independent.
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Which Come First: 
the Conditions or the Residuals? (cont.)

5. If the scatterplots look OK, then make a histogram and Normal 
probability plot of the residuals to check the Nearly Normal Condition.

6. If all the conditions seem to be satisfied, go ahead with inference.
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Intuition About Regression Inference

• We expect any sample to produce a b1 whose expected value is the 
true slope, 1. 

• What about its standard deviation? 

• What aspects of the data affect how much the slope and intercept 
vary from sample to sample?
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Intuition About Regression Inference (cont.)

• Spread around the line:
• Less scatter around the line means the slope 

will be more consistent from sample to 
sample. 

• The spread around the line is measured with 
the residual standard deviation se.

• You can always find se in the regression 
output, often just labeled s.
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Intuition About Regression Inference (cont.)

• Spread around the line:
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Less scatter around the line means the slope will 

be more consistent from sample to sample.



Intuition About Regression Inference (cont.)

• Spread of the x’s: A large standard deviation of x provides a more stable 
regression.
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Intuition About Regression Inference (cont.)

• Sample size: Having a larger sample size, n, gives more consistent 
estimates.
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Standard Error for the Slope
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• Three aspects of the scatterplot affect the standard error of the 
regression slope: 
• spread around the line, se

• spread of x values, sx

• sample size, n.

• The formula for the standard error (which you will probably never have 
to calculate by hand) is: 



Sampling Distribution for Regression Slopes
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• When the conditions are met, the standardized estimated regression 
slope

follows a Student’s t-model with n – 2 degrees of freedom.



Sampling Distribution for Regression Slopes 
(cont.)
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• We estimate the standard error with

where:

•

• n is the number of data values

• sx is the ordinary standard deviation of the x-values.
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What About the Intercept?

• The same reasoning applies for the intercept. 

• We can write

but we rarely use this fact for anything. 

• The intercept usually isn’t interesting. Most hypothesis tests and 

confidence intervals for regression are about the slope.
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Regression Inference

 1 2 1nb t SE b
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• A null hypothesis of a zero slope questions the entire 
claim of a linear relationship between the two variables—
often just what we want to know.

• To test H0: 1 = 0, we find             

and continue as we would with any other t-test.

• The formula for a confidence interval for 1 is 

  

t
n2


b

1
 0

SE b
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*Standard Errors for Predicted Values

• Once we have a useful regression, how can we indulge our natural 
desire to predict, without being irresponsible?

• Now we have standard errors—we can use those to construct a 
confidence interval for the predictions, smudging the results in the 
right way to report our uncertainty honestly.
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*Standard Errors for Predicted Values (cont.)
• For our %body fat and waist size example, there are two questions we 

could ask:
• Do we want to know the mean %body fat for all men with a waist size of, say, 

38 inches?

• Do we want to estimate the %body fat for a particular man with a 38-inch 
waist?

• The predicted %body fat is the same in both questions, but we can 
predict the mean %body fat for all men whose waist size is 38 inches 
with a lot more precision than we can predict the %body fat of a
particular individual whose waist size happens to be 38 inches.
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*Standard Errors for Predicted Values (cont.)

0 1ŷ b b x  
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• We start with the same prediction in both cases.
• We are predicting for a new individual, one that was not in the original data 

set.

• Call his x-value xν (38 inches).

• The regression predicts %body fat as



*Standard Errors for Predicted Values (cont.)
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• Both intervals take the form 

• The SE’s will be different for the two questions we have posed.



*Standard Errors for Predicted Values (cont.)

• The standard error of the mean predicted value is: 

• Individuals vary more than means, so the standard error for 
a single predicted value is larger than the standard error for 
the mean:
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*Standard Errors for Predicted Values (cont.)

• Keep in mind the distinction between the two kinds of confidence 
intervals.
• The narrower interval is a confidence interval for the predicted mean value

at xν
• The wider interval is a prediction interval for an individual with that x-value.
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*Confidence Intervals for Predicted Values

• Here’s a look at the 
difference between 
predicting for a mean and 
predicting for an 
individual.

• The solid green lines near 
the regression line show 
the 95% confidence 
interval for the mean 
predicted value, and the 
dashed red lines show the 
prediction intervals for 
individuals.
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What Can Go Wrong?

• Don’t fit a linear regression to data that aren’t straight.

• Watch out for the plot thickening.
• If the spread in y changes with x, our predictions will be very good for 

some x-values and very bad for others.

• Make sure the errors are Normal.
• Check the histogram and Normal probability plot of the residuals to see if 

this assumption looks reasonable.
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What Can Go Wrong? (cont.)

• Watch out for extrapolation.
• It’s always dangerous to predict for x-values that lie far from the center of the 

data.

• Watch out for high-influence points and outliers.

• Watch out for one-tailed tests.
• Tests of hypotheses about regression coefficients are usually two-tailed, so 

software packages report two-tailed P-values.

• If you are using software to conduct a one-tailed test about slope, you’ll need 
to divide the reported P-value in half.
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What have we learned?

• We have now applied inference to regression models.

We’ve learned:

• Under certain assumptions, the sampling distribution for the slope 
of a regression line can be modeled by a Student’s t-model with n –
2 degrees of freedom.

• To check four conditions, in order, to verify the assumptions. Most 
checks can be made by graphing the data and residuals.
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What have we learned?

• To use the appropriate t-model to test a hypothesis about the 
slope. If the slope of the regression line is significantly different 
from 0, we have strong evidence that there is an association 
between the two variables.

• To create and interpret a confidence interval or the true slope.

• We have been reminded yet again never to mistake the presence of 
an association for proof of causation.
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