Wednesday, March 20, 2019

- Warm-up
- Use the given computer output:
-Identify:
- Confidence interval
- Mean

- Using the mean and Cl , calculate the Margin of Error 4.097-2.775=1.3217 2.775-1.453
- Using ME and t^{*}, calculate the Standard Error ME: $t^{*} S E$

$$
\frac{1.3217}{1.984}=\frac{1.984 .5 E}{1.984}
$$

$\rightarrow S E=0.666$

- Using If - calculate n

Objectives

- Content Objective: I will use the tdistribution to compare means of different samples.
- Social Objective: I will listen and not cause distractions for myself or others.
- Language Objective: I will take clear notes that I can understand when I refer to them later.

Question - how many shoes do you own?

Sometimes we want to compare two means...
Males $\rightarrow 5,6,25,7,12,2,4,3,3,3,4,15$
Females $\rightarrow 7,16,16,8,21,2,7,22,12,8,41,7$, ,
$H_{0}: \mu_{m}=\mu_{f}$

37, 22
H $\mu_{m}<\mu_{F} \quad{ }_{\mathrm{F}}^{\mathrm{s} \rightarrow-1}-1$
$H_{A} \cdot \mu_{m}<\mu_{F} \quad 2$ sample t-test $\quad \&(-18.73,-1.11)$

$$
t_{21.43}=-2.38
$$

p-value $=0.013$
Due to a low prole f0.013,
we reject the mil. There is sufficust
evidere that the average number of shows
For females is greater than males.

Comparing Two Xeans

- Once we have examined the side-by-side boxplots, we can turn to the comparison of two means.
- Comparing two means is not very different from comparing two proportions.
- This time the parameter of interest is the difference between the two means, $\mu_{1}-\mu_{2}$.

Brand Name

Comparing Two Means

- Because we are working with means and estimating the standard error of their difference using the data, we shouldn't be surprised that the sampling model is a Student's t.
- The confidence interval we build is called a two-sample t-interval (for the difference in means).
- The corresponding hypothesis test is called a two-sample t-test.

Assumptions and Conditions

- Independence Assumption (Each condition needs to be checked for both groups.):
- Randomization Condition: Were the data collected with suitable randomization (representative random samples or a randomized experiment)?
- 10% Condition: We don't usually check this condition for differences of means. We will check it for means only if we have a very small population or an extremely large sample.

Terms and conditions

Assumptions and Conditions

- Normal Population Assumption

Nearly Normal Condition: This must be checked for both groups. A violation by either one violates the condition.

- Independent Groups Assumption The two groups we are comparing must be independent of each other.

Formulas

Remember that, for independent random quantities, variances add.

So, the standard deviation of the difference between two sample means is

$$
S D\left(\overline{y_{1}}-\overline{y_{2}}\right)=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

We still don't know the true standard deviations of the two groups, so we need to estimate and use the standard error

$$
\operatorname{SE}\left(\overline{y_{1}}-\overline{y_{2}}\right)=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

Two-Sample t-Interval

When the conditions are met, we are ready to find the confidence interval for the difference between means of two independent groups, $\mu_{1}-\mu_{2}$.
The confidence interval is

$$
\left(\bar{y}_{1}-\bar{y}_{2}\right) \pm t_{d f}^{*} \times S E\left(\bar{y}_{1}-\bar{y}_{2}\right)
$$

where the standard error of the difference of the means is

$$
S E\left(\bar{y}_{1}-\bar{y}_{2}\right)=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

The critical value $t^{*}{ }_{\text {df }}$ depends on the particular confidence level, C, that you specify and on the number of degrees of freedom, which we get from the sample sizes and a special formula.

Degrees of Freedom

- The special formula for the degrees of freedom for our t critical value is a bear:

$$
d f=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}
$$

- Because of this, we will let technology calculate degrees of freedom for us!

$$
\begin{aligned}
& p 579 \\
& \left(3^{-6}\right)
\end{aligned}
$$

