$$
\begin{gathered}
z \text { score }=0 \\
\text { p-value } \\
0.42
\end{gathered}
$$

$$
z \text {-score } 00.78
$$

$$
2 \text { prop }
$$

Warm-up

Use the calculator to find the z and p-value for the following hypothesis test
A random sample of $n_{0}=153$ people ages 16 to 19 was taken from the island of Oahu, Hawaii, and 12 were found to be high school dropouts. Another random sample of $n_{s}=128$ people ages 16 to -19 was taken from Sweetwater County, Wyoming, and 7 were found to be high school dropouts. Do these data indicate that the population proportion of high school dropouts on Oho (p_{0}) is different (either way) from that of Sweetwater * County $\left(p_{s}\right)$? Use a 1% significance.

- Check homework
- 2 proportions

Objectives

 ideas.will listen well and take in class:

- Language Objectiver I will assignment goes well. good notes so the

A random sample of $n_{0}=153$ people ages 16 to 19 was taken from the island of Oahu, Hawaii, and 12 were found to be high school dropouts. Another random sample of $\mathrm{n}_{\mathrm{s}}=128$ people ages 16 to 19 was taken from Sweetwater County, Wyoming, and 7 were found to be high school dropouts. Do these data indicate that the population proportion of high school dropouts on Oaho $\left(p_{o}\right)$ is different (either way) from that of Sweetwater County $\left(p_{s}\right)$? Use a 1% significance.

Comparing Two Proportions

- Comparisons between two percentages are much more common than questions about isolated percentages. And they are more interesting.
- We often want to know how two groups differ, whether a treatment is better than a placebo control, or whether this year's results are better than last year's.

Assumptions and Conditions

- Independence Assumptions:
- Randomization Condition: The data in each group should be drawn independently and at random from a homogeneous population or generated by a randomized comparative experiment.
- The 10% Condition: If the data are sampled without replacement, the sample should not exceed 10% of the population.
- Independent Groups Assumption: The two groups we're comparing must be independent of each other.

Assumptions and Conditions

- Sample Size Condition:
- Each of the groups must be big enough...
- Success/Failure Condition: Both groups are big enough that at least 10 successes and at least 10 failures have been observed in each.

A random sample of $n_{o}=153$ people ages 16 to 19 was taken from the island of Oahu, Hawaii, and 12 were found to be high school dropouts. Another random sample of $\mathrm{n}_{\mathrm{s}}=128$ people ages 16 to 19 was taken from Sweetwater County, Wyoming, and 7 were found to be high school dropouts. Do these data indicate that the population proportion of high school dropouts on Oho $\left(p_{o}\right)$ is different (either way) from that of Sweetwater County $\left(p_{s}\right)$? Use a 1% significance.

$$
\begin{aligned}
& \text { Doses not conditions } \\
& \text { not met proved with }
\end{aligned}
$$

$$
\begin{aligned}
& \text { oses most concur } \\
& \text { cannot proceed with } \\
& \text { Drop } z \text { test }
\end{aligned}
$$

$$
\begin{aligned}
& \text { andes prove test } \\
& \text { two-prop } z \text { ter }
\end{aligned}
$$

A research group asked voters "would you favor spending more federal tax money on the arts?" Of a random sample of $n_{c}=93$ politically conservative voters, $r_{c}=21$ responded yes. Another random sample of $n_{m}=83$ politically moderate voters showed that $r_{m}=22$ responded yes. Does this information indicate that the population proportion of conservative voters $\left(p_{c}\right)$ inclined to spend more federal tax money on funding the arts is less than the proportion of moderate voters $\left(\mathrm{p}_{\mathrm{m}}\right)$ so inclined? Use $\alpha=0.05$

Conditions

$$
\begin{gathered}
\text { conservative } \\
\text { random-stated } \\
10 \% \rightarrow 93<10 \% \\
\text { of all conserve. } \\
21 \geq 10>\text { success } \\
93-21 \geq 10 \text { fail } \\
A<m i m e \text { indy }
\end{gathered}
$$

Assume indepe
Proceed wi prop

The same is true of their difference.

Another Ruler

- In order to examine the difference between two proportions, we need another ruler-the standard deviation of the sampling distribution model for the difference between two proportions.
- Recall that standard deviations don't add, but variances do. In fact, the variance of the sum or difference of two independent random quantities is the sum of their individual variances.

Provided that the sampled values are independent, the samples are independent, and the samples sizes are large enough, the sampling distribution of $\hat{p}_{1}-\hat{p}_{2}$ is modeled by a Normal model with

- Mean:

$$
\mu=p_{1}-p_{2}
$$

- Standard deviation:

$$
S D\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}
$$

A random sample of $n_{0}=153$ people ages 16 to 19 was taken from the island of Oahu, Hawaii, and 12 were found to be high school dropouts. Another random sample of $n_{s}=128$ people ages 16 to 19 was taken from Sweetwater County, Wyoming, and 7 were found to be high school dropouts. Do these data indicate that the population proportion of high school dropouts on Oho $\left(p_{o}\right)$ is different (either way) from that of Sweetwater County $\left(p_{s}\right)$? Use a 1% significance.

$$
\begin{aligned}
& H_{0} p_{0}=p_{S} \quad p_{0} f_{S}=0 \\
& H_{A}: p_{0} \neq p_{S} \quad p_{0}-p_{S} \neq 0 \\
& \hat{p}_{0}=\frac{12}{159}=0.078 \\
& \hat{p}_{5}=\frac{7}{128}=\frac{0.054}{0.022}
\end{aligned}
$$

$\hat{P}_{1}-\hat{P}_{2}$

$$
\begin{array}{r}
\mu=p_{1}-p_{2} \\
S D\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}
\end{array}
$$

$z:$

$$
\frac{0.022-0}{\sqrt{\frac{(0.088(69222)}{153}+\frac{(0.054)(0.946)}{128}}}
$$

A research group asked voters "would you favor spending more federal tax money on the arts?" Of a random sample of $n_{c}=93$ politically conservative voters, $r_{c}=21$ responded yes. Another random sample of $n_{m}=83$ politically moderate voters showed that $r_{m}=22$ responded yes. Does this information indicate that the population proportion of conservative voters $\left(p_{c}\right)$ inclined to spend more federal tax money on funding the arts is less than the proportion of moderate voters $\left(p_{m}\right)$ so inclined? Use $\alpha=0.05$

USA Today reported that the percentage of U.S. residents living in poverty was 12.5% for men and 15.1% for women. These percentages were estimates based on data from large representative samples of men and women. Suppose the sample sizes were 1200 for men and 1000 for women. Is there sufficient evidence to conclude that a greater percentage of women are living in poverty than men?

$$
1-h_{A}: p_{m}<p_{w} \quad\left(p_{m}-p_{w}<0\right)
$$

Due to a low p-value of
0.038, we reject the null. There
is suffient evipence to conclude that a greater percentage of ubs are lining in popery than men.

