-Warm-up

- A home alarm system has detectors covering n zones of the house. Suppose the probability is 0.7 that a detector sounds an alarm when an intruder passes through its zone, and this probability is the same for each detector. The alarms operate independently. An intruder enters the house and passes through all the zones.
- What is the probability that at least one alarm sounds if $n=3$?
What is the probability that at least one alarm sounds if $n=6$?
- How large must n be in order to have the probability of at least one alarm sounding be about 0.99?
Reaching for beads

$$
P=0.7 \quad P(0)=(.3)^{3}=0.027
$$

- What is the probability that ait least one alarm sounds if $\boldsymbol{n}=\mathbf{3}$?
binomialcdf $(3,0.7,1,3)=0.973$
- What is the probability that at least one alarm sounds if $n=67$

$$
n=6 \quad \mathscr{E}^{2} 0.999
$$

- How large must n be in order to have the probability of at least one alarm
ending be about 0.99?

$$
n=4 \rightarrow 0.9919
$$

mean $\rightarrow \mu$

standard deviation $\rightarrow \sigma$ parameter an estimate proportions $\rightarrow P$ (lower case)

A number that describes some characteristic of the population. In statistical practice, the value of a parameter is usually not known because we cannot examine the entire population

Objectives

Content: I will examine random events and analyze the data from them. Social: I will participate in the class activity well.
Language: I will explain my reasoning in a clear manner and listen to others.

mean \rightarrow standard deviation $\rightarrow S_{x}$

 Statistic characteristic of a sample. The value of a statistic can be computed directly from the sample data. We often use a statistic to estimate an unknown parameter.
Objectives

Content: I will examine random events and analyze the data from them.
Social: I will participate in the class activity well.
Language: I will explain my reasoning in a clear manner and listen to others.

Sampling distribution

The distribution

 of values taken by the statistic in all possible samples of the same size from the sameContent: I will examine random events and analyze the data from them. Social: I will participate in the class activity well. Language: I will explain my reasoning in a clear manner and listen to others.

Question to Ponder:

How does the sampling distribution change when n (the number in the sample) changes?

Central himit Theoren

Draw an sis of sire mvoit mean μ and finite కtandard deviation or The central Iimit theorem [CLT] Says that when mirs Iarge, the sampling ๔นรษโibution of the saniple mean \bar{x} is ลpproxyingtely Normal.

Objectives

Content: I will examine random events and analyze the data from them.
Social: I will participate in the class activity well.
Language: I will explain my reasoning in a clear manner and listen to others.

Sampling distribution of \bar{x}

http://bit.ly/PlingDist

The Fundamental Theorem of Statistics

- The sampling distribution of any mean becomes more nearly Normal as the sample size grows.
- All we need is for the observations to be independent and collected with randomization.
- We don't even care about the shape of the population distribution!
- The Fundamental Theorem of Statistics is called the Central Limit Theorem (CLT).

The Central Limit Theorem (CLT)

The mean of a random sample is

 a random variable whose sampling distribution can be approximated by a Normal model. The larger the sample, the better the approximation will be.
Homework

Page 432 (1-4)

