16201 Smanos = dababer

Wednesday, January 16, 2019 Falure : not doubl

 Warm-up- In the board game Monopoly, one way to get out of jail is to roll doubles. The random variable of interest is $\mathrm{Y}=$ number of attempts it takes to roll doubles one time. On each roll, the $P(x \leq 9) \quad 6 / 36$

Find the probability that you roll a double within 3 turns.

Find the probability that it take more than 3 turns to roll doubles, and interpret this value in context.
$P(x>3)=\frac{1-0.4 \alpha}{=0.58}$
Check homework
The Binomial Model

Objectives

Content: I will use a binomial model to calculate probabilities. Social: I will listen and participate in the class discussion.
Language: I will clarify which phrases determine a binomial model vs. those which determine a geometric model.

Objectives

- Content Objective: I will use a binomial model to calculate probabilities.
- Social Objective: I will listen and participate in the class discussion.
- Language Objective: I will clarify which phrases determine a binomial model vs. those which determine a geometric model.

The Geometric Model

- The number of trials until our first success.
- Waiting time

The Binomial Model $\rightarrow \begin{aligned} & \text { "out of" " } \\ & \text { we know how } \\ & \text { many trials }\end{aligned}$

- The number of successes in a given number of trials

Objectives

Content: I will use a binomial model to calculate probabilities.
Social: I will listen and participate in the class discussion.
Language: I will clarify which phrases determine a binomial model vs. those which determine a geometric

The Binomial Model

- A Binomial model tells us the probability for a random variable that counts the number of successes in a fixed number of Bernoulli trials.
- Two parameters define the Binomial model: n, the number of trials; and, p, the probability of success. We denote this Binom (n, p).

Obiectives

Content: I will use a binomial model to calculate probabilities.
Social: I will listen and participate in the class discussion. Language: I will clarify which phrases determine a binomial model vs. those which determine a geometric

The Binomial Model (cont.)

roll 10 times probability of 2 n woos k - In n trials, there are

- Read ${ }_{n} C_{k}$ or $\binom{n}{k}$ as " n choose k."
- Note: $n!=n \times(n-1) \times \ldots \times 2 \times 1$, and $n!$ is read as " n factorial.,

Objectives

Content: I will use a binomial model to calculate probabilities.
Social: I will listen and participate in the class discussion.
Language: I will clarify which phrases determine a binomial model vs. those which determine a geometric model.

The Binomial Model (cont.)

Binomial probability model for Bernoulli trials:

 Binom(n,p)$n=$ number of trials
$p=$ probability of success
$q=1-p=$ probability of failure

$$
\mu=n p
$$

$X=$ \# of successes in n trials

$$
P(X=x)={ }_{n} C_{x} p^{x} q^{n-x}
$$

Objectives

Content: I will use a binomial model to calculate probabilities.
Social: I will listen and participate in the class discussion.
Language: I will clarify which phrases determine a binomial model vs. those which determine a geometric model.

Example
Back to the speckled M\&M's. Remember that 30% of the M\&M in a bag are speckled

- If I have a handful o 5 candies, how many speckled ones do I expect to get? $\mu=n p=5(0.3)=1.5$ candies mean $E(X)$
- What is the standard deviation of the number of candies I will get? $\sigma=\sqrt{n P q}=\sqrt{(5)(0.3)(0.7)}=1.0247$ candies
 $P(x=2)={ }_{5} C_{2}(0.3)^{2}(0.7)^{3}=\frac{5^{2.4} \cdot 3!}{2 \cdot 3!}(0.3)^{2}(0.1)^{3}=0.308$
- What is the probability that we will find at least 2 speckled ones in a handful of 5 candies?

$$
\text { binomcdf(5, } 0.3,2,5)
$$

Probablity $L \rightarrow$ Distributions

$$
\begin{aligned}
& P(X=2)=\begin{array}{c}
n=5 \\
P=0.3 \\
x \text { valuse } \\
\text { (scoceses) } 2 \rightarrow 2
\end{array} \rightarrow 0.308 \\
& =n i=5 \\
& P\left(X_{\text {at least } 2}\right)=\frac{\pi}{5}=5 \\
& \text { laverbound = } 2 \rightarrow 0.47 \\
& \text { upperboand }=5
\end{aligned}
$$

Another Example
"What is the expected value or arg? $\mu=n P$

- Back to the dice rolls. What is the probability that we will rom 35 's in a group of 20 rolls?
binomialcdf or \square pdf237
- What is the probability that we will roll at most 35 's in a group of 20 rolls?

$$
\begin{aligned}
& \text { cdt lbound: } 0 \\
& \text { upbound: } 3
\end{aligned} \rightarrow 0.566
$$

- What is the probability that There will be some 5 's in a group of 20

$$
\begin{aligned}
& \text { = What is the probability that there will be some } 5 \text { 's in a group of } 20 \\
& \text { rolls? } 20 \text { bound }=1 \\
& \text { coff } \rightarrow \text { up bound }=20
\end{aligned}
$$

- What is the probability that the first 5 is the $8^{8 \mathrm{~h}}$ or $9^{\text {th }}$ roll?

$$
\text { no" } n " \text { " geometric }\left(\frac{5}{6}\right)^{7}\left(\frac{1}{6}\right)+\left(\frac{5}{6}\right)^{8}\left(\frac{1}{6}\right)
$$

Calculator "Tricks"

Scrabble

In the game of scrabble, each player begins by drawing 7 tiles from a bag containing 100 tiles. There are 42 vowels, 56 consonants, and 2 blank tiles in the bag.

- What is the probability of all 7 drawn being a vowel?
- What is the probability that some of the 7 are vowels?
- What is the probability that the vowel is the $2^{\text {nd }}$ or $3^{\text {rd }}$ draw?
- How long should we expect to wait to draw a vowel?

Objectives

Content: I will use a binomial model to calculate probabilities.
Social: I will listen and participate in the class discussion.
Language: I will clarify which phrases determine a binomial model vs. those which determine a geometric model.

Objective Recheck

- Content Objective: I will use a binomial model to calculate probabilities.
- Social Objective: I will listen and participate in the class discussion.
- Language Objective: I will clarify which phrases determine a binomial model vs. those which determine a geometric model.

Homework

- Page 403 (25, 27, 26, 30)

