- Let X = the number of fiving grandparents that a randomly selected adult American has. According to recent General Social Surveys, its probability distribution is approximately $P(0)=0.71, P(1)=0.15, P(2)=0.09, P(3)=0.03$, $\mathrm{P}(4)=0.02$.

Does this refer to a discrete or continuous random variable? Why?
Discrete - whole people

Find the mean and standard deviation of this probability distribution.

$$
M=0.5 \quad \sigma=0.92
$$

Objectives

Content: I will use the geometric model to determine probability and expected value.
Social: I will listen well and participate in the class discussion.
Language: I will use correct vocabulary in explaining probability situations.

Objectives

- Content Objective: I will use the geometric model to determine probability and expected value.
- Social Objective: I will listen well and participate in the class discussion.
- Language Objective: I will use correct vocabulary in explaining probability situations.

Bernoulli Trials

The basis for the probability models we will examine in this chapter is the Bernoulli trial.

- A little background on Bernoulli
- We have Bernoulli trials if:
- there are two possible outcomes (success and failure).
- the probability of success, p, is constant.
- the trials are independent.
- Examples...?

Objectives

Content: I will use the geometric model to determine probability and expected value. Social: I will listen well and participate in the class discussion.
Language: I will use correct vocabulary in explaining probability situations.

The Geometric Model

A single Bernoulli trial is usually not all that interesting.

- A Geometric probability model tells us the probability for a random variable that counts the number of Bernoulli trials until the first success. "wait time"
- Geometric models are completely specified by one parameter, p, the probability of success, and are denoted Geom(p).

Objectives

Content: I will use the geometric model to determine probability and expected value. Social: I will listen well and participate in the class discussion.
Language: I will use correct vocabulary in explaining probability situations.

The Geometric Model (cont.)

Geometric probability model for Bernoulli trials: Geom(p)
$p=$ probability of success
$q=1-p=$ probability of failure

$X=$ number of trials until the first success occurs

$$
\begin{gathered}
P(X=X)=q^{x-1} p \\
E(X)=\mu=\frac{1}{p} \quad \sigma=\sqrt{\frac{q}{p^{2}}}
\end{gathered}
$$

Objectives

Content: I will use the geometric model to determine probability and expected value. Social: I will listen well and participate in the class discussion.
Language: I will use correct vocabulary in explaining probability situations.

Example
Greedy Pig

$$
E(X)=\mu=\frac{1}{p} \quad \sigma=\sqrt{\frac{q}{p^{2}}}
$$

- Waiting for a 5...

What are the two outcomes? 5 or not 5
What are their probabilities? $\frac{1}{6} \quad \frac{5}{6}$
Can we assume independent? How do you know? Yes
What is our expected value? What does it mean?

$$
E(x)=\mu=\frac{1}{b}=6
$$

$$
1-\frac{1}{2}=1 \times \frac{6}{1}
$$

What is our standard deviation? What does it mean?

$$
\sigma==5 / 6 /\left(\frac{1}{6}\right)^{2}=\sqrt{\frac{5}{6}} \times \frac{360}{1}: \sqrt{30} \approx 5.47
$$

What's the probability that the first 5 we see is the fourth roll?

$$
\begin{aligned}
& P(X=4)=\left(\frac{5}{6}\right)^{3}\left(\frac{1}{6}\right) \\
& P(X=x)=q^{X-1} p
\end{aligned}
$$

Simulate to see how close we are
Objectives

Another Example
A new sales gimmick has 30% of the M\&M's covered with speckles. These "groovy" candies are mixed randomly with the normal candies as they are put into the bags for distribution and sale. You buy a bag and remove candies one at a time looking for the speckles.

- What are the two outcomes? speckles or not speckles
- What are their probabilities? 0.3 0.7
- Can we assume independent? How do you know? Yes
- What's the probability that the first speckled one we see is the fourth candy we get? $P(X=4)=(0.7)^{3}(0.3)=0.102$
- How many do we expect to check, on average to find a speckled one?

$$
E(X)=\mu=\frac{1}{p}=\frac{0.3}{0.3}=3.3, \sigma=\sqrt{\frac{c}{p^{2}}}=\sqrt{\frac{0.7}{0.3^{2}}}=2.78
$$

Objectives
Content: I will use the geometric model to determine probability and expected value.
Social: I will listen well and participate in the class discussion.
Language: I will use correct vocabulary in explaining probability situations.

Independence

 $10 \times$ sample < population One of the important requirements for Bernoulli trials is that the trials be independent.- When we don't have an infinite population, the trials are not independent. But, there is a rule that allows us to pretend we have independent trials:
- The 10\% condition: Bernoulli trials must be independent. If that assumption is violated, it is still okay to proceed as long as the sample is smaller than 10% of the population.

Objectives

Content: I will use the geometric model to determine probability and expected value. Social: I will listen well and participate in the class discussion.
Language: I will use correct vocabulary in explaining probability situations.

Objective Check

- Content Objective: I will use the geometric model to determine probability and expected value.
- Social Objective: I will listen well and participate in the class discussion.
- Language Objective: I will use correct vocabulary in explaining probability situations.

Homework

- Page 402 (9,11,10,12, 13-14)

