Monday, January 14, 2019

Warm-up

- Scores on the ACT test for the 2007 high school graduating class had mean 21.2 and standard deviation 5.0. This is approximated by a Normal curve of $\mathrm{N}(21.2,5.0)$. Find the zscore of a score of 27 , then determine the percent of scores greater than 27.

Objectives

Content: I will use the mean and standard deviation of Normal distributions to determine probability of continuous variables.
Social: I will focus on the lesson so as to understand the content.
Language: I will listen carefully and use correct vocabulary in class discussion.

Objectives

- Content Objective: I will use the mean and standard deviation of Normal distributions to determine probability of continuous variables.
- Social Objective: I will focus on the lesson so as to understand the content.
- Language Objective: I will listen carefully and use correct vocabulary in class discussion.

Warm-up

- Scores on the ACT test for the 2007 high school graduating class had mean 21.2 and standard deviation 5.0. This is approximated by a Normal curve of $N(21.2,5.0)$. Find the zscore of a score of 27 , then determine the percent of scores greater than 27.

$$
\begin{aligned}
z & =\frac{27-21.2}{5} \\
& =1.16
\end{aligned}
$$

Suppose a used car dealer runs autos through a two-stage process to get them ready to sell. The mechanical checkup costs $\$ 50$ per hour and takes an average of 90 minutes, with a standard deviation of 15 minutes. The appearance prep (wash, polish, etc.) costs $\$ 6$ per hour and takes an average of 60 minutes, with a standard deviation of 5
minutes $E(M)=90 \quad S D(M)=15 \quad E(A)=60 \quad S D(A)=5$

- What are the mean and standard deviation of the total time spent preparing a car? $E(M+A)=E(M)+E(A)=90+60=150 \mathrm{~min}$

What are the mean and standard deviation of the difference in time $90-60$
for the two phases to prepare a car? $E(M-A)=E(M)-E(A)=90$.

$$
S D(M-A)=\sqrt{S D(M)^{2}+S D(A)^{2}}=\sqrt{15^{2}+5^{2}}=15.811 \mathrm{~min}
$$

- What are the mean and standard deviation of the difference in costs for the two phases of the operation?

Continuous Random Variables

 Random variables that can take on any value in a range of values are called continuous random variables.Now, any single value won't have a probability, but...
Continuous random variables have means (expected values) and variances.
We won't worry about how to calculate these means and variances in this course, but we can still work with models for continuous random variables when we're given the parameters.

Objectives

Content: I will use the mean and standard deviation of Normal distributions to determine probability of continuous variables.
Social: I will focus on the lesson so as to understand the content.
Language: I will listen carefully and use correct vocabulary in class discussion.

Continuous Random Variables (cont.)

- Good news: nearly everything we've said about how discrete random variables behave is true of continuous random variables, as well.
- When two independent continuous random variables have Normal models, so does their sum or difference.
- This fact will let us apply our knowledge of Normal probabilities to questions about the sum or difference of independent random variables.

Objectives

[^0]Suppose a used car dealer runs autos through a two-stage process to get them ready to sell. The mechanical checkup costs $\$ 50$ per hour and takes an average of 90 minutes, with a standard deviation of 15 minutes. The appearance prep (wash, polish, etc.) costs $\$ 6$ per hour and takes an average of 60 minutes, with a standard deviation of 5 minutes

- What is the probability that it will take longer to do the appearance prep than the mechanical checkup? (we must assume that each process can be explained by a Normal model)

$$
E(M-A)=30 \mathrm{~min}
$$

$S D(M-A)=15.8116$

$$
\begin{aligned}
z & =\frac{0-30}{16} \\
& =-\frac{36}{16}=-1.875
\end{aligned}
$$

$$
0.0307
$$

$E(C)=396$ so ($)$ - Another example $E(L)=3.98$ $5 D(L)=0.02$
The diameter COfol randomly selected large drink cup at a fast-food restaurant follows a Normal distribution with a mean of 3.96 inches and a standard deviation of 0.01 inches. The diameter L of a randomly selected large lid at this restaurant follows a Normal distribution with mean 3.98 inches and standard deviation 0.02 inches. For a lid to fit on a cup, the value of L has to be bigger than the value of C, but not by more than 0.06 inches.

- How much larger to you expect the lid to be than the cup?

$$
E(L-C)=E(L)-E(C)=3.98-3.96=0.02
$$

- What's the standard deviation of this difference?

$$
S D(L \cdot C)=\sqrt{S D(L)^{2}+S D(C)^{2}}=\sqrt{0.02^{2}+0.01^{2}}=0.0223
$$

- What is the probability that a randomly selected lid will fit on a randomly selected cup? normalcdf $(0,0.06,0.02,0.0223)$

Content: I will use the mean and standard deviation of Normal distributions to determine probability of continuous variables. Social: I will focus on the lesson so as to understand the content.
Language: I will listen carefully and use correct vocabulary in class discussion.

Chapter Summary: What Can Go Wrong?

- Probability models are still just models.
- Models can be useful, but they are not reality.
- Question probabilities as you would data, and think about the assumptions behind your models.
- If the model is wrong, so is everything else.

Objectives

Content: I will use the mean and standard deviation of Normal distributions to determine probability of continuous variables.
Social: I will focus on the lesson so as to understand the content.
Language: I will listen carefully and use correct vocabulary in class discussion.

What Can Go Wrong? (cont.)

- Don't assume everything's Normal.
- You must Think about whether the Normality Assumption is justified.
Watch out for variables that aren't independent:
- You can add expected values for any two random variables, but
- you can only add variances of independent random variables.

Objectives

Content: I will use the mean and standard deviation of Normal distributions to determine probability of continuous variables.
Social: I will focus on the lesson so as to understand the content.
Language: I will listen carefully and use correct vocabulary in class discussion.

What Can Go Wrong? (cont.)

- Don't forget: Variances of independent random variables add. Standard deviations don't. Don't forget: Variances of independent random variables add, even when you're looking at the difference between them.
Don't write independent instances of a random variable with notation that looks like they are the same variables.

Objectives

[^1]
What have we learned?

- We know how to work with random variables.
- We can use a probability model for a discrete random variable to find its expected value and standard deviation.
- The mean of the sum or difference of two random variables, discrete or continuous, is just the sum or difference of their means.
- And, for independent random variables, the variance of their sum or difference is always the sum of their variances.

Objectives

Content: I will use the mean and standard deviation of Normal distributions to determine probability of continuous variables.
Social: I will focus on the lesson so as to understand the content.
Language: I will listen carefully and use correct vocabulary in class discussion.

What have we learned? (cont.)

- Normal models are once again special.
- Sums or differences of Normally distributed random variables also follow Normal models.

Objectives

Content: I will use the mean and standard deviation of Normal distributions to determine probability of continuous variables.
Social: I will focus on the lesson so as to understand the content.
Language: I will listen carefully and use correct vocabulary in class discussion.

Homework

P 385 (37, 39, 38, 40)

[^0]: Content: I will use the mean and standard deviation of Normal distributions to determine probability of continuous variables.
 Social: I will focus on the lesson so as to understand the content.
 Language: I will listen carefully and use correct vocabulary in class discussion.

[^1]: Content: I will use the mean and standard deviation of Normal distributions to determine probability of continuous variables.
 Social: I will focus on the lesson so as to understand the content.
 Language: I will listen carefully and use correct vocabulary in class discussion.

