Friday, January 11, 2018

- Warm-up
- Faked numbers in tax returns, invoices, or expense account claims often display patterns that aren't present in legitimate records. Some patterns, like too many round numbers, are obvious and easily avoided by a clever crook. Others are more subtle. It is a striking fact that the first digits of numbers in legitimate records often follow a model known as Benford's law. Call the first digit of a randomly chosen record X for short. Below is a probability model for this situation.
$\begin{array}{llllllllll}\text { Prob. } & 0.301 & 0.176 & 0.125 & 0.097 & 0.079 & 0.067 & 0.058 & 0.051 & 0.046\end{array}$
- Calculate the Expected Value ($\mathrm{E}(\mathrm{X})$ or μ)
- Calculate the variance and standard deviation

More with Expected Value, Variance \& Standard Deviation

Objectives

Content: I will apply changes of random variables to changes in expected value, variance and standard deviation.
Social: I will participate in class discussion and not distract others or myself from the lesson. Language: I will write clear notes that I can refer to in description of expected value, variance and standard deviation.

Objectives

- Content Objective: I will apply changes of random variables to changes in expected value, variance and standard deviation.
- Social Objective: I will participate in class discussion and not distract others or myself from the lesson.
- Language Objective: I will write clear notes that I can refer to in description of expected value, variance and standard deviation.

Check Homework: p 383 (1-3,6,9-11,14)

1. Expected value.
a) $\mu=E(Y)=10(0.3)+20(0.5)+30(0.2)=19$
b) $\mu=E(Y)=2(0.3)+4(0.4)+6(0.2)+8(0.1)=4.2$
2. Expected value.
a) $\mu=E(Y)=0(0.2)+1(0.4)+2(0.4)=1.2$
b) $\mu=E(Y)=100(0.1)+200(0.2)+300(0.5)+400(0.2)=280$

Objectives

Content: I will apply changes of random variables to changes in expected value, variance and standard deviation.
Social: I will participate in class discussion and not distract others or myself from the lesson.
Language: I will write clear notes that I can refer to in description of expected value, variance and standard deviation.

Check Homework: p 383 (1-3,6,9-11,14)

a)

b) $\mu=E$ (amount won) $=\$ 0\left(\frac{26}{52}\right)+\$ 5\left(\frac{13}{52}\right)+\$ 10\left(\frac{12}{52}\right)+\$ 30\left(\frac{1}{52}\right) \approx \$ 4.13$
c) Answers may vary. In the long run, the expected payoff of this game is $\$ 4.13$ per play. Any amount less than $\$ 4.13$ would be a reasonable amount to pay in order to play. Your decision should depend on how long you intend to play. If you are only going to play a few times, you should risk less.

Objectives

Content: I will apply changes of random variables to changes in expected value, variance and standard deviation.
Social: I will participate in class discussion and not distract others or myself from the lesson.
Language: I will write clear notes that I can refer to in description of expected value, variance and standard deviation.

Check Homework: p 383 (1-3,6,9-11,14)
 6. Carnival. 10% chare

a)

Net winnings	$\$ 95$	$\$ 90$	$\$ 85$	$\$ 80$	$-\$ 20$
number of darts	1 dart	2 darts	3 darts	4 darts (win)	4 darts (lose)
	$\left(\frac{1}{10}\right)$	$\left(\frac{9}{10}\right)\left(\frac{1}{10}\right)$	$\left(\frac{9}{10}\right)^{2}\left(\frac{1}{10}\right)$	$\left(\frac{9}{10}\right)^{3}\left(\frac{1}{10}\right)$	$\left(\frac{9}{10}\right)^{4}$
P(Amount won)	$=0.1$	$=0.09$	$=0.081$	$=0.0729$	$=0.6561$

b) $\mu=E$ (number of darts) $=1(0.1)+2(0.09)+3(0.081)+4(0.0729)+4(0.6561) \approx 3.44$ darts
c) $\mu=E($ winnings $)=\$ 95(0.1)+\$ 90(0.09)+\$ 85(0.081)+\$ 80(0.0729)-\$ 20(0.6561) \approx \$ 17.20$

Objectives

Content: I will apply changes of random variables to changes in expected value, variance and standard deviation.
Social: I will participate in class discussion and not distract others or myself from the lesson.
Language: I will write clear notes that I can refer to in description of expected value, variance and standard deviation.

Check Homework: p 383 (1-3,6,9-11,14)

9. Variation 1.
a)

$$
\begin{aligned}
& \left.\sigma^{2}=\operatorname{Var}(Y)=(10-19)^{2}(0.3)+(20-19)^{2}(0.5)+30-19\right)^{2}(0.2)=49 \quad \text { actual- } \mu \\
& \sigma=S D(Y)=\sqrt{\operatorname{Var}(Y)}=\sqrt{49}=7
\end{aligned}
$$

b)

$$
\begin{aligned}
& \sigma^{2}=\operatorname{Var}(Y)=(2-4.2)^{2}(0.3)+(4-4.2)^{2}(0.4)+(6-4.2)^{2}(0.2)+(8-4.2)^{2}(0.1)=3.56 \\
& \sigma=\operatorname{SD}(Y)=\sqrt{\operatorname{Var}(Y)}=\sqrt{3.56} \approx 1.89 \\
& \text { ration 2. } \quad Z=\frac{x-\mu}{s}
\end{aligned}
$$

10. Variation 2.

a)

$$
\begin{aligned}
& \sigma^{2}=\operatorname{Var}(Y)=(0-1.2)^{2}(0.2)+(1-1.2)^{2}(0.4)+(2-1.2)^{2}(0.4)=0.56 \\
& \sigma=S D(Y)=\sqrt{\operatorname{Var}(Y)}=\sqrt{0.56} \approx 0.75
\end{aligned}
$$

b)

$$
\begin{aligned}
& \sigma^{2}=\operatorname{Var}(Y)=(100-280)^{2}(0.1)+(200-280)^{2}(0.2)+(300-280)^{2}(0.5)+(400-280)^{2}(0.2)=7600 \\
& \sigma=S D(Y)=\sqrt{\operatorname{Var}(Y)}=\sqrt{7600} \approx 87.18
\end{aligned}
$$

Objectives

Content: I will apply changes of random variables to changes in expected value, variance and standard deviation.
Social: I will participate in class discussion and not distract others or myself from the lesson.
Language: I will write clear notes that I can refer to in description of expected value, variance and standard deviation.

Check Homework: p 383 (1-3,6,9-11,14)

11. Pick another card.

Answers may vary slightly (due to rounding of the mean)

$$
\begin{aligned}
\sigma^{2}=\operatorname{Var}(\text { Won }) & =(0-4.13)^{2}\left(\frac{26}{52}\right)+(5-4.13)^{2}\left(\frac{13}{52}\right) \\
& +(10-4.13)^{2}\left(\frac{12}{52}\right)+(30-4.13)^{2}\left(\frac{1}{52}\right) \approx 29.5396 \\
\sigma=S D(\text { Won })= & \sqrt{\operatorname{Var}(\text { Won })}=\sqrt{29.5396} \approx \$ 5.44
\end{aligned}
$$

14. Darts.

$$
\begin{aligned}
& \sigma^{2}=\operatorname{Var}(\text { Winnings })=(95-17.20)^{2}(0.1)+(90-17.20)^{2}(0.09)+(85-17.20)^{2}(0.081) \\
& \quad+(80-17.20)^{2}(0.0729)+(-20-17.20)^{2}(0.6561) \approx 2650.057 \\
& \sigma=S D(\text { Winnings })=\sqrt{\operatorname{Var}(\text { Winnings })} \approx \sqrt{2650.057} \approx \$ 51.48
\end{aligned}
$$

Objectives

Content: I will apply changes of random variables to changes in expected value, variance and standard deviation. Social: I will participate in class discussion and not distract others or myself from the lesson.
Language: I will write clear notes that I can refer to in description of expected value, variance and standard deviation.

Talk about warm-up

X	1	2	3	4	5	6	7	8	9
Prob.	0.301	0.176	0.125	0.097	0.079	0.067	0.058	0.051	0.046

$$
\begin{aligned}
& E(x)=\mu=(1)(0.301)+(2)(0.176)+ \\
& =3.441 \\
& \operatorname{Var}(x)=\sigma^{2}=(1-3.441)^{2}(0.301)+(2 \cdot 3.441)^{2}(0.176)+ \\
& =6.060 \quad S D(x)=\sigma \cdot \sqrt{6.060} \\
& \approx 2.46
\end{aligned}
$$

$\sum(x)=\mu \rightarrow$ center $\quad \operatorname{Var} \$ S D \rightarrow$ spread Remember data transformations

- How does a data shift (+ or -) affect
- Measures of center? + or - constant
- Measures of spread? do not change
- How does a multiplier affect
- Measures of center? \times by constant
- Measures of spread? \times

Objectives

Content: I will apply changes of random variables to changes in expected value, variance and standard deviation.
Social: I will participate in class discussion and not distract others or myself from the lesson.
Language: I will write clear notes that I can refer to in description of expected value, variance and standard deviation.

More About Means and Variances

Adding or subtracting a constant from data shifts the mean but doesn't change the variance or standard deviation:

$$
\begin{gathered}
E(X \pm c)=E(X) \pm c \\
E(X+5000)=E(X)+5000
\end{gathered}
$$

$\operatorname{Var}(X \pm c)=\operatorname{Var}(X)$
$\operatorname{Var}(x+5000)=\operatorname{Var}(x)$ receiving a $\$ 5000$ increase in salary.

Objectives

Content: I will apply changes of random variables to changes in expected value, variance and standard deviation.
Social: I will participate in class discussion and not distract others or myself from the lesson.
Language: I will write clear notes that I can refer to in description of expected value, variance and standard deviation.

More About Means and Variances (cont.)

 In general, multiplying each value of a random variable by a constant multiplies the mean by that constant and the variance by the square of the constant:$$
\begin{array}{ll}
E(a X)=a E(X) & \operatorname{Var}(a X)=a^{2} \operatorname{Var}(X) \\
E(1 . \mid X)=1.1(E(x)) & \operatorname{Var}(1.1 X)=1.1^{2} \operatorname{Var}(X) \\
& S D(1.1 X)=1.1 \operatorname{SD}(x)
\end{array}
$$

- Example: Consider everyone in a company receiving a 10% increase in salary.

More About Means and Variances (cont.)

- In general,
- The mean of the sum of two random variables is the sum of the means.
- The mean of the difference of two random variables is the difference of the means.

$$
E(X \pm Y)=E(X) \pm E(Y)
$$

- If the random variables are independent, the variance of their sum or difference is always the sum of the variances.

$$
\operatorname{Var}(X \pm Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Objectives

Content: I will apply changes of random variables to changes in expected value, variance and standard deviation.
Social: I will participate in class discussion and not distract others or myself from the lesson.
Language: I will write clear notes that I can refer to in description of expected value, variance and standard deviation.

Why?

- Why $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$ when $E(a X)=a E(X)$?
- Remember Pythagorean Theorem?
- Why $\operatorname{Var}(X \pm Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$?
- Example

Grape Drink

- If the random variables are independent, the variance of their sum or difference is always the sum of the variances.

$$
\operatorname{Var}(X \pm Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Objectives

Content: I will apply changes of random variables to changes in expected value, variance and standard deviation.
Social: I will participate in class discussion and not distract others or myself from the lesson.
Language: I will write clear notes that I can refer to in description of expected value, variance and standard deviation.

Why?

- If the random variables are independent, the variance of their sum or difference is always the sum of the variances.

$$
\operatorname{Var}(X \pm Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Objectives

Content: I will apply changes of random variables to changes in expected value, variance and standard deviation.
Social: I will participate in class discussion and not distract others or myself from the lesson.
Language: I will write clear notes that I can refer to in description of expected value, variance and standard deviation.

Objective Check

- Content Objective: I will apply changes of random variables to changes in expected value, variance and standard deviation.
- Social Objective: I will participate in class discussion and not distract others or myself from the lesson.
- Language Objective: I will write clear notes that I can refer to in description of expected value, variance and standard deviation.

Homework

- Page 384 (23-26)

