Wednesday, January 9, 2019

- Warm-up
 - What is the probability of rolling a 5 on a dice roll?
 - What is the probability that the first 5 will be your 4th roll? $\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{1}{6}\right)^{2}$ $\left(\frac{5}{6}\right)^{3}\left(\frac{1}{6}\right)^{2}$ $O_{\bullet}O96$
 - What is the probability that the first 5 will be your 10th roll? $\left(\frac{5}{6}\right)\left(\frac{1}{6}\right) = 0.032$
- Another Game
- Random Variables

Objectives

Content: I will experiment with random variables and expected value. Social: I will participate in class activities. Language: I will listen for and write down key vocabulary: expected value, random variable, and the law of large numbers.

Objectives

- Content Objective: I will be able to calculate expected value, population mean, variance and standard deviation of a probability situation.
- Social Objective: I will participate in the class activity.
- Language Objective: I will watch for and use correct vocabulary when describing events in class today.

Another dice game

 Consider a dice game using one regular 6 sided die to win money
There are no points for rolling a 1, 2, or 3

5+0+10+5+

10 - 10 + 0 + 0

- 5 dollars for 4 or 5
- 10 dollars for a 6
- How much would you pay to play?
- Let's play

Objectives

Content: I will experiment with random variables and expected value.

Social: I will participate in class activities. Language: I will listen for and write down key vocabulary: expected value, random variable, and the law of large numbers.

- A random variable assumes a value based on the outcome of a random event.
 - We use a capital letter, like X, to denote a random variable.
 - A particular value of a random variable will be denoted with the corresponding lower case letter, in this case x.

today.

Objectives

Content: I will be able to calculate **expected value**, **population mean**, **variance** and **standard deviation** of a probability situation. Social: I will participate in the class activity. Language: I will watch for and use correct vocabulary when describing events in class

Two Types of Random Variables

- Discrete random variables can take one of a countable number of distinct outcomes.
 - Example: Shoe size
- Continuous random variables can take any numeric value within a range of values.
 - Example: Foot length

Objectives

Content: I will be able to calculate **expected value**, **population mean**, **variance** and **standard deviation** of a probability situation.

Social: I will participate in the class activity.

Probability Models

- A probability model for a random variable consists of:
 - The collection of all possible values of a random variable, and
 - the probabilities that the values occur.
- Of particular interest is the value we expect a random variable to take on, notated μ (for population mean) or E(X) for expected value.

Objectives

Content: I will be able to calculate **expected value**, **population mean**, **variance** and **standard deviation** of a probability situation. Social: I will participate in the class activity. Language: I will watch for and use correct vocabulary when describing events in class today.

Let's Create a probability model

- Our dice game:
 - There are no points for rolling a 1, 2, or 3
 - 5 extra points for 4 or 5
 - 10 extra points for a 6

Example: Spell Checking

Spell-checking software catches "nonword errors," which result in a string of letters that is not a word as when "the" is typed as "teh." When undergraduates are asked to write a 250-word essay (without spell-checking), the number *X* of nonword errors has the following distribution.

Value of X	0	1	2	3	4
Probability	0.1	0.2	0.3	0.3	0.1

Objectives

Content: I will be able to calculate **expected value**, **population mean**, **variance** and **standard deviation** of a probability situation. Social: I will participate in the class activity.

Using the formula

• The expected value of a (discrete) random variable can be found by summing the products of each possible value by the probability that it occurs: $\mu = E(X) = \sum (x \cdot P(x))$

 Note: Be sure that every possible outcome is included in the sum and verify that you have a valid probability model to start with.

Objectives

Content: I will be able to calculate **expected** value, population mean, variance and standard deviation of a probability situation.

Social: I will participate in the class activity.

Calculate Expected Value

- Our Dice game from the other day:
 - There are no points for rolling a 1, 2, or 3
 - 5 dollars for 4 or 5

10 dollars for a 6 $3 + 5 \cdot 2 + 10 \cdot 6 =$						
Roll	1,2,3	4,5	6			
Value	0	5	10			
P(Value)	3/6	2/6	1/6			

 $\mu = E(X) = \sum x \cdot P(x)$

Example: Spell Checking

What is the expected value (center, mean) for the number of nonword errors?

$\mu = \underline{E(X)} = \sum x \cdot P(x)$							
Value of X	0	1	2	3	4		
Probability	0.1	0.2	0.3	0.3	0.1		
0.0.1 + 1.0.2 + 2.0.3 + 3.0.3 + 4.0.1 (2.1)							

Objectives

Content: I will be able to calculate **expected value**, **population mean**, **variance** and **standard deviation** of a probability situation.

Social: I will participate in the class activity.

Brain Break

First Center, Now Spread...

- For data, we calculated the standard deviation by first computing the deviation from the mean and squaring it. We do that with discrete random variables as well.
- The variance for a random variable is: $\sigma^2 = Var(X) = \sum (x - \mu)^2 \cdot P(x)$
- The standard deviation for a random variable is: $\sigma = SD(X) = \sqrt{Var(X)}$

Objectives

Content: I will be able to calculate expected value, population mean, variance and standard deviation of a probability situation. Social: I will participate in the class activity. Language: I will watch for and use correct vocabulary when describing events in class today.

Calculate Standard Deviation $\int = D(x) = \sqrt{13.88}$ = 3.72

- Our Dice game:
 - There are no points for rolling a 1, 2, or 3
 - 5 dollars for 4 or 5
 - 10 dollars for a 6

 $\sigma^2 = Var(X) = \sum (x - \mu)^2 \cdot P(x)$ $\sigma = SD(X) = \sqrt{Var(X)}$ M = 3.33

	Roll	1,2,3	4,5	6	
	Value	Ο	5	10	
2.1.	P(Value)	3/6	2/6	1/6	1284
5~{\b1(x)=	$(0-3.33)^2(\frac{3}{6})^$)+(5-3.3	$3)^{2}(\frac{2}{6}) + (10)$)-3.33)2(5	$) = \left[1 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $

N= 2.1 **Example: Spell Checking** What is the spread (variance & standard deviation) for the number of nonword errors? $\sqrt{\alpha r(x)} = 1.29$ $\sigma = 1.39$

$$\sigma^{2} = Var(X) = \sum (x - \mu)^{2} \cdot P(x) \qquad \sigma = SD(X) = \sqrt{Var(X)}$$

Value of X	0	1	2	3	4	
Probability	0.1	0.2	0.3	0.3	0.1	
$(0-2.1)^{2}(0.1) + (1-2.1)^{2}(0.2) = 1.29$						

Objectives

Content: I will be able to calculate **expected** value, population mean, variance and standard deviation of a probability situation.

Social: I will participate in the class activity.

Homework

• P 383 (1-3, 6, 9-11, 14)