Wednesday, January 9, 2019

- Warm-up
- What is the probability of rolling a 5 on a dice roll? $\frac{1}{6}$
- What is the probability that the first 5 will be your $4^{\text {th }}$ roll?

$$
\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{1}{6}\right)^{2}=\left(\frac{5}{6}\right)^{3}\left(\frac{1}{6}\right)=0.096
$$

- What is the probability that the first 5 will be your $10^{\text {th }}$ roll?

$$
\left(\frac{5}{6}\right)^{9}\left(\frac{1}{6}\right)=0.032
$$

- Another Game
- Random Variables

Objectives

Content: I will experiment with random variables and expected value.
Social: I will participate in class activities.
Language: I will listen for and write down key vocabulary: expected value, random variable, and the law of large numbers.

Objectives

- Content Objective: I will be able to calculate expected value, population mean, variance and standard deviation of a probability situation.
- Social Objective: I will participate in the class activity.
- Language Objective: I will watch for and use correct vocabulary when describing events in class today.

$$
\begin{aligned}
& 5+0+10+5+ \\
& 10+10+0+0
\end{aligned}
$$

Another dice game

- Consider a dice game using one regular 6 sided die to win money
- There are no points for rolling a 1,2 , or 3
- 5 dollars for 4 or 5
- 10 dollars for a 6
- How much would you pay to play?
- Let's play

Objectives

Content: I will experiment with random variables and expected value.
Social: I will participate in class activities.
Language: I will listen for and write down
key vocabulary: expected value, random
variable, and the law of large numbers.

Expected Value: Center $x=$ valued

 random variable- A random variable assumes a value based on the outcome of a random event.
- We use a capital letter, like X, to denote a random variable.
- A particular value of a random variable will be denoted with the corresponding lower case letter, in this case x.

Objectives

Content: I will be able to calculate expected value, population mean, variance and standard deviation of a probability situation. Social: I will participate in the class activity. Language: I will watch for and use correct vocabulary when describing events in class today.

Two Types of Random Variables

- Discrete random variables can take one of a countable number of distinct outcomes.
- Example: Shoe size
- Continuous random variables can take any numeric value within a range of values.
-Example: Foot length

Objectives

Content: I will be able to calculate expected value, population mean, variance and standard deviation of a probability situation. Social: I will participate in the class activity. Language: I will watch for and use correct vocabulary when describing events in class today.

$$
E(x)=\mu=
$$

Probability Models

- A probability model for a random variable consists of:
- The collection of all possible values of a random variable, and
- the probabilities that the values occur.
- Of particular interest is the value we expect a random variable to take on, notated μ (for population mean) or $E(X)$ for expected value.

Content: I will be able to calculate expected value, population mean, variance and standard deviation of a probability situation. Social: I will participate in the class activity.

Let's Create a probability model

- Our dice game:
- There are no points for rolling a 1,2 , or 3
- 5 extra points for 4 or 5
- 10 extra points for a 6

Example: Spell Checking

Spell-checking software catches "nonword errors,"," which result in a string of letters that is not a word as when "the" is typed as "teh." When undergraduates are asked to write a 250-word essay (without spell-checking), the number X of nonword errors has the following distribution.

Value of X	0	1	2	3	4
Probability	0.1	0.2	0.3	0.3	0.1

Objectives

Content: I will be able to calculate expected value, population mean, variance and standard deviation of a probability situation. Social: I will participate in the class activity. Language: I will watch for and use correct vocabulary when describing events in class today.

Using the formula

- The expected value of a (discrete) random variable can be found by summing the products of each possible value by the probability that it occurs:

$$
\mu=E(X)=\sum(x \cdot P(x))
$$

- Note: Be sure that every possible outcome is included in the sum and verify that you have a valid probability model to start with.

Objectives

Content: I will be able to calculate expected value, population mean, variance and standard deviation of a probability situation. Social: I will participate in the class activity. Language: I will watch for and use correct vocabulary when describing events in class today.

Calculate Expected Value

- Our Dice game from the other day:
- There are no points for rolling a 1,2 , or 3
- 5 dollars for 4 or 5

$$
\mu=E(X)=\sum x \cdot P(x)
$$

- 10 dollars for a 6

Example: Spell Checking

What is the expected value (center, mean) for the number of nonword errors?

$$
(1 /)=E(X)=\sum x \cdot P(x)
$$

Objectives

Content: I will be able to calculate expected value, population mean, variance and standard deviation of a probability situation. Social: I will participate in the class activity. Language: I will watch for and use correct vocabulary when describing events in class today.

Brain Break

First Center, Now Spread...

- For data, we calculated the standard deviation by first computing the deviation from the mean and squaring it. We do that with discrete random variables as well.
- The variance for a random variable is:

$$
\sigma^{2}=\operatorname{Var}(X)=\sum(x-\mu)^{2} \cdot P(x)
$$

- The standard deviation for a random variable is: $\sigma=S D(X)=\sqrt{\operatorname{Var}(X)}$

Objectives

Content: I will be able to calculate expected value, population mean, variance and standard deviation of a probability situation. Social: I will participate in the class activity. Language: I will watch for and use correct vocabulary when describing events in class today.

Calculate Standard Deviation

- Our Dice game:
$\begin{aligned} \sigma=S D(x) & =\sqrt{13.88} \\ & \approx 3.72\end{aligned}$
- There are no points for rolling a 1,2 , or 3
- 5 dollars for 4 or 5

$$
\sigma^{2}=\operatorname{Var}(X)=\sum(x-\mu)^{2} \cdot P(x)
$$

- 10 dollars for a 6

$$
\sigma=S D(X)=\sqrt{\operatorname{Var}(X)}
$$

Roll	$1,2,3$	4,5	6
Value	0	5	10
$P($ Value $)$	$3 / 6$	$2 / 6$	$1 / 6$
$\sigma^{2}: \operatorname{Var}(x)=(0-3.33)^{2}\left(\frac{3}{6}\right)+(5-3.33)^{2}\left(\frac{2}{6}\right)+(10-3.33)^{2}\left(\frac{1}{6}\right)=13.88$			

Example: Spell Checking
 $$
\mu=2.1
$$

 $\mu=2.1$

 $\mu=2.1$}What is the spread (variance \& standard deviation) for the number

$$
\sigma=\sqrt{1.29}=1.13
$$

$$
\sigma^{2}=\operatorname{Var}(X)=\sum(x-\mu)^{2} \cdot P(x)
$$

$$
\sigma=S D(X)=\sqrt{\operatorname{Var}(X)}
$$

Value of X	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Probability	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$	$\mathbf{0 . 3}$	$\mathbf{0 . 3}$	$\mathbf{0 . 1}$
$(0-2.1)^{2}(0.1)+(1-2.1)^{2}(0.2)$					$=1.29$

Objectives

Content: I will be able to calculate expected value, population mean, variance and standard deviation of a probability situation. Social: I will participate in the class activity. Language: I will watch for and use correct vocabulary when describing events in class today.

Homework

- P 383 (1-3, 6, 9-11, 14)

