## Friday, November 30, 2018 $P(A \cup B)=P(A)+P(B)-P(A \cap \overparen{B})$ <br>  <br> 

- Warm-up
- If $P(A)=0.25$ and $P(B)=0.4$, what is

$$
P(A \cap B)=P(A) \times P(B \mid A)
$$ $P(A \cup B)$ if $A$ and $B$ are disjoint? $P(A)+P(B)-P(A \cap B)$

$$
0.25+0.4-0 \quad P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

- If $P(A)=0.25$ and $P(B)=0.4$, what is $P(A \cap B)$ (if $A$ and $B$ are independent)? $P(A) \times P(B \mid A)$

$$
P(B)=P(B / A) \quad 0.25 \times 0.4=0.1
$$

- If $P(A)=0.25$ and $P(B)=0.4$, what is $P(A \mid B) ? P(A \mid B)=\frac{P(M \mid B)}{P(B)}=\frac{0.1}{0.4}$ $P(A) \longrightarrow P(B) \longrightarrow 0.25$
- More Practice with Probability


## Objectives

Content Objective: I will solve problems involving probability.
Social Objective: I will stay focused to complete as many problems as possible.
Language Objective: I will use correct vocabulary in discussion problems.

## It Depends...

- Back in Chapter 3, we looked at contingency tables and talked about conditional distributions.
- When we want the probability of an event from a conditional distribution, we write $P(B \mid A)$ and pronounce it "the probability of B given A."
- A probability that takes into account a given condition is called a conditional probability.

Conditional Probability with tables $\frac{14}{27}$
$\left.\begin{array}{|c|c|c|cc|}\hline & \text { Pierced } & \text { Not Pierced } & \text { total } & \frac{16}{27} \\ \hline \text { Male } & 2 & 10 & 12 & \frac{14}{27} \cdot \frac{21}{16}\end{array}\right\}$

- $P($ female $)=\frac{15}{27}$

$$
P(F \cup P)=P(F)+P(P)
$$

$P(F \cap F)$

- $P($ pierced $)=\frac{16}{27}$
- $P($ female and piercing $)=\frac{14}{27}$
- $P($ female or piercing $)=\frac{15}{27}+\frac{16}{27}-\frac{14}{27}=\frac{17}{27}$
- $P($ female $\mid$ piercing $)=\frac{14}{16}$
- $P($ piercing $\mid$ female $)=\frac{14}{15}$


## Independence

- Independence of two events means that the outcome of one event does not influence the probability of the other.
- With our new notation for conditional probabilities, we can now formalize this definition:
- Events $\mathbf{A}$ and $\mathbf{B}$ are independent whenever $P(\mathbf{B} \mid \mathbf{A})=P(\mathbf{B})$.
(Equivalently, events $\mathbf{A}$ and $\mathbf{B}$ are independent whenever $P(\mathbf{A} \mid \mathbf{B})=P(\mathbf{A})$.

Are the events "being pierced" and "being female" independent?

$$
\begin{aligned}
& P(F \mid P) \stackrel{?}{=} P(F) \quad P(P \mid F)=P(P) \\
& \frac{14}{16} \stackrel{?}{=} \frac{15}{27} \quad \frac{14}{15} \xrightarrow{=} \frac{16}{27} \\
& \text { not int independent } \\
& P(F) \quad P(F / W) \text { not indpender } \\
& \begin{array}{cc}
\frac{15}{27} & \frac{4}{8} \\
0.55 & 4 \\
0.5
\end{array}
\end{aligned}
$$



Videa to refresh...

