

- Warm-up
- Graph the following: $f(x)=2 x^{2}-4 x-6$
- Mark and state the y-intercept, x-intercept, axis of symmetry and vertex
- Question of the Day:

- What can I get from a standard form quadratic equation?
- And how do I do it?

Objectives

Content: I will be able to determine y-intercept, x-intercept, vertex, focus and directrix from the standard form of the quadratic equation.
Social: I will do my best today to stay focused and take good notes. Language: I will clearly define determine y-intercept, x-intercept, vertex, focus and directrix in writing for my own reference.
$f(x)=\frac{2}{2} x^{2}-4 x-6$
$2(x-3)(x+1)$

- y-intercept: $(0,-6)$
$x-3=0$
- x-intercept: $(3,0)(-1,0) \rightarrow x=3$
- axis of symmetry: $x=1\left(-\frac{b}{2 a}\right)^{x=}=\frac{3+-1}{2}$
- vertex: $(1)-8)$
- vertex: $(1,-8)$

- focus: $\left(1,-7 \frac{7}{8}\right)$
- directrix: $y=-8 \frac{1}{5}$
vertex form

$$
\begin{aligned}
& d=\frac{1}{4 a} a=\frac{1}{4 d} \\
& d=\frac{1}{4 \cdot 2}=\frac{1}{8}
\end{aligned}
$$

$$
\begin{aligned}
& \text { cortex }(x-h)^{2}+k \\
& a^{2}(x-0)^{2}+-(-8)
\end{aligned}
$$

Content: I will be able to determine y-intercept, x-intercept, vertex, focus and directrix from the standard form of the quadratic equation.
Social: I will do my best today to stay focused and take good notes
Language: I will clearly define determine y-intercept, x-intercept, vertex, focus and directrix in writing for my own reference.

START WITH A STANDARD FORM OF QUADRATICEQUATION

$y=x^{2}+x-6$

- y - intercept:
- x-intercept:

- axis of symmetry:
- vertex:
- focus:
- directrix:

Objectives

Content: I will be able to determine y-intercept, x-intercept, vertex, focus and directrix from the standard form of the quadratic equation.
Social: I will do my best today to stay focused and take good notes.
Language: I will clearly define determine y-intercept, x-intercept, vertex, focus and directrix in writing for my own reference.

YOUPRACTICE

$y=x^{2}-4 x-5$

- y - intercept:
- x - intercept:
- axis of symmetry:

- vertex:
- focus:
- directrix:

Objectives

Content: I will be able to determine y-intercept, x-intercept, vertex, focus and directrix from the standard form of the quadratic equation.
Social: I will do my best today to stay focused and take good notes.
Language: I will clearly define determine y-intercept, x-intercept, vertex, focus and directrix in writing for my own reference.

Focus: $(4,6)$ distance: Directrix: y = 0

$$
\sqrt[m c e:]{\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}}}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Four to parabola } \\
\left(\sqrt{(6-y)^{2}+(4-x)^{2}}\right)^{2}=\left(\sqrt{(0-y)^{2}+(x-x)^{2}}\right)^{2}
\end{array} \\
& (6-y)^{2}+(4-x)^{2}=(0-y)^{2}+(x-x)^{2} \text {.ad } \\
& (6-y)(6-y)+(4-x)(4-x)=(-y)^{2}+0^{2} \frac{6+0}{2} \\
& 36-6 y 6 y^{2} y^{2}+16-4 y-4 x+x^{2}: y^{2} \quad 3 \\
& \begin{array}{l}
\text { vertex form } \\
y=a(x-h)^{2}+k \\
y=\frac{1}{12}(x-4)^{2}+3
\end{array} \\
& d=3_{0}=\frac{1}{4 a} \cdot a \\
& \frac{3}{3} a=\frac{1}{4} \cdot \frac{1}{3} \\
& a=\frac{1}{12}
\end{aligned}
$$

Challenge: find the quadratic $\left({ }_{\nu} x_{\downarrow}\right)$

 equations given the following

Directrix: $y=0$

$a=1$

Vertex: $(-2,4)$
$a=-1$

Focus: $(3,-2)$
 Directrix: $y=4$

Objectives

Content: I will find and identify critical values of a parabola including y-intercept, x-intercept, vertex, focus and directrix.
Social: I will help those around me to understand by explaining my reasoning clearly.
Language: I will use the vocabulary for the critical values of a parabola including y-intercept, x-intercept, vertex, focus and directrix correctly in speaking.

