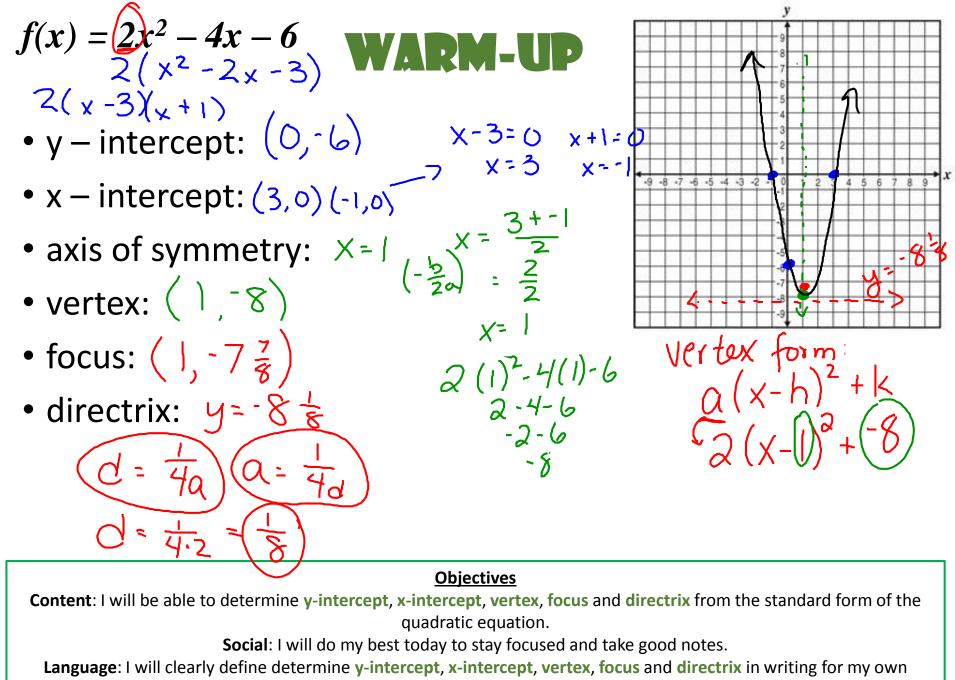

• Warm-up • Graph the following: $f(x) = 2x^2 - 4x - 6$


 Mark and state the y-intercept, x-intercept, axis of symmetry and vertex

- Question of the Day:
 - What can I get from a standard form quadratic equation?
 - And how do I do it?

Objectives

Content: I will be able to determine y-intercept, x-intercept, vertex, focus and directrix from the standard form of the quadratic equation.
Social: I will do my best today to stay focused and take good notes.
Language: I will clearly define determine y-intercept, x-intercept, vertex, focus and directrix in writing for my own reference.

reference.

START WITH A STANDARD FORM OF QUADRATIC EQUATION

- $y = x^2 + x 6$
- y intercept:
- x intercept:
- axis of symmetry:
- vertex:
- focus:
- directrix:

					λ						
					6						
					5						
					4						
					3						
					2						
					1						
↓ -6	-5	-4	-3	-2	-1	1	2	3	4	5	6
					-2						
					-3						
					-4						
					-5						
					-6)	<i>,</i>					

Objectives

Content: I will be able to determine **y-intercept**, **x-intercept**, **vertex**, **focus** and **directrix** from the standard form of the quadratic equation.

Social: I will do my best today to stay focused and take good notes.

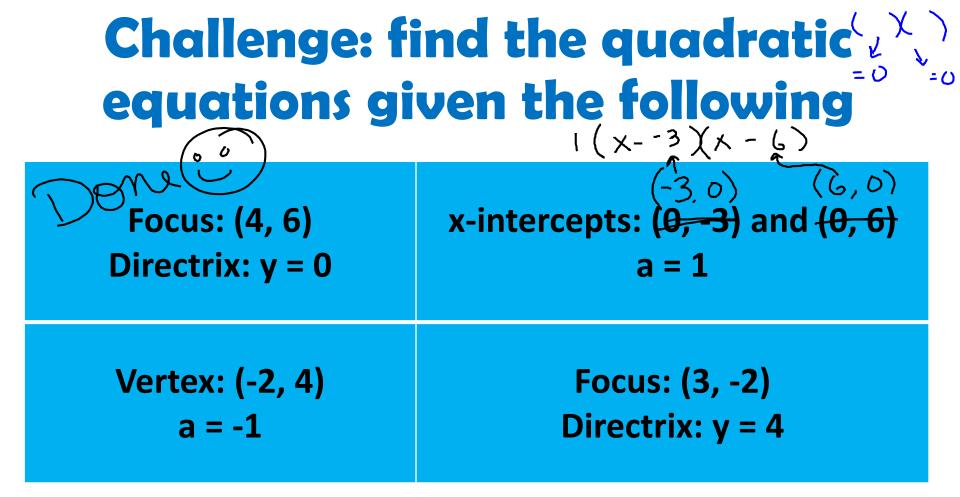
Language: I will clearly define determine y-intercept, x-intercept, vertex, focus and directrix in writing for my own reference.

YOU PRACTICE

$$y = x^2 - 4x - 5$$

- y intercept:
- x intercept:
- axis of symmetry:
- vertex:
- focus:
- directrix:

					6						
					5						
					4						
					3						
					2						
					1						
											~
≺ -6	-5	-4	-3	-2	-1	1	2	3	4	5	
←	-5	-4	-3	-2	-1 -2	1	2	3	4	5	→ 6
-6	-5	-4	-3	-2		1	2	3	4	5	6
-6	-5	-4	-3	-2	-2	1	2	3	4	5	6
-6	-5	-4	-3	-2	-2 -3	1	2	3	4	5	6


Objectives

Content: I will be able to determine **y-intercept**, **x-intercept**, **vertex**, **focus** and **directrix** from the standard form of the quadratic equation.

Social: I will do my best today to stay focused and take good notes.

Language: I will clearly define determine y-intercept, x-intercept, vertex, focus and directrix in writing for my own reference.

 $\frac{(y_{2}-y_{1})^{2}}{(y_{2}-y_{1})^{2}} + (x_{2}-x_{1})^{2} + (x_{3}-x_{1})^{2} + (x$ Focus: (4, 6) Directrix: y = 0Focks to parabola Directrix to parabola $\left(\sqrt{(6-y)^2 + (4-x)^2} \right) = \left(\sqrt{(0-y)^2 + (x-x)^2} \right)$ vertex form $(6-y)^{2} + (4-x)^{2} = (0-y)^{2} + (x-x)^{2} m de^{ie} \frac{y = \alpha (x-h)^{2} + |x|}{1 - 1 - 1 - 1 - 1}$ $(6-y)(b-y) + (2(-x)(4-x)) = (-y)^{2} + 0^{2}$ $d=3_0=\frac{1}{4\alpha}\cdot\alpha$ 36-6y 6y+y2 + 16-2/y-4x+x2: y2 3 $\frac{3}{3}a = \frac{1}{4}, \frac{1}{3}$ $3 \qquad \frac{1}{12}$

Objectives

Content: I will find and identify critical values of a parabola including y-intercept, x-intercept, vertex, focus and directrix.

Social: I will help those around me to understand by explaining my reasoning clearly. Language: I will use the vocabulary for the critical values of a parabola including y-intercept, x-intercept, vertex, focus and directrix correctly in speaking.