TMurscay, February 21, 2019

- Warm-up

Transform \triangle EFG using the following rules.
Write each answer as a matrix.

1. $(x, y) \rightarrow(x+4, y)$
2. $(x, y) \rightarrow(x, y-2)$
$\Delta \mathrm{EFG}=\left[\begin{array}{lll}5 & 4 & 8 \\ 1 & 5 & 6\end{array}\right]$
3. $(x, y) \rightarrow(-y-1, x+1)$

Objectives:

Content: I will use rules to produce rigid transformations.
Social: I will participate in the class activities and support my group.
LO: I will explain how to translate, rotate, and reflect rigid shapes using rules.

Transform $\triangle E F G$ using the following rules. Write each answer as a matrix.

1. $(x, y) \rightarrow(x+4, y)\left[\begin{array}{lll}9 & 8 & 12 \\ 1 & 5 & 6\end{array}\right]$
2. $(x, y) \rightarrow(x, y-2)$
3. $(x, y) \rightarrow(-y-1, x+1)$

Objectives:

Content: I will use rules to produce rigid transformations.
Social: I will participate in the class activities and support my group.
LO: I will explain how to translate, rotate, and reflect rigid shapes using rules.

Deflections

Let's Complete the Transformation Rules Table

Geometric Idea	Coordinate Ấlodel
Translation	
*Reflection across x-axis	
Reflection across y-axis	
180° rotation	
270° counterclockwise rotation	

* admission?

Current Prices
Upcoming
PB
current profit
employees

- how much thy mali f
- how many - how many

Repairs? Aunt of people each day? Utilies - water, electricity

8

Quiz

$\sqrt{\text { Check your Understanding }}$

Consider the following matrix representation of $\triangle A B C$.
$\triangle A B C=\left[\begin{array}{rrr}-1 & 4 & 3 \\ 2 & -3 & 5\end{array}\right] \quad A^{\prime} B^{\prime} C^{\prime}$
a. On separate grids, sketch and abel $\triangle A B C$ and its image under each of
the following transformations.
i. Reflection across the y-axis
ii. Translation with horizontal component -3 and vertical component 2
iii. Reflection across the line $y=x$
iv. Rotation of 180° about the origin
v. Rotation of 90° counterclockwise about the origin
b. For one of the transformations in Part a, use coordinates to show that $\triangle A B C$ and its transformed image are congruent.

