Thursday, February 21, 2019

Warm-up

Transform Δ EFG using the following rules.

Write each answer as a matrix.

1.
$$(x, y) \rightarrow (x + 4, y)$$

2.
$$(x, y) \rightarrow (x, y - 2)$$

3.
$$(x, y) \rightarrow (-y - 1, x + 1)$$

$$\Delta EFG = \begin{bmatrix} 5 & 4 & 8 \\ 1 & 5 & 6 \end{bmatrix}$$

Objectives:

Content: I will use <u>rules</u> to produce rigid transformations.

Social: I will participate in the class activities and support my group.

LO: I will explain how to *translate*, *rotate*, and *reflect rigid shapes using rules*.

Transform Δ EFG using the following rules.

Write each answer as a matrix.

2.
$$(x, y) \rightarrow (x, y-2)$$
 5 4 6 -1 3 4

3.
$$(x, y) \rightarrow (-y - 1, x + 1)$$

Objectives:

Content: I will use <u>rules</u> to produce rigid transformations.

Social: I will participate in the class activities and support my group.

LO: I will explain how to *translate*, *rotate*, and *reflect rigid shapes using rules*.

Let's Complete the Transformation Rules Table		7
Geometric Idea	Coordinate Model	<u>y = - X</u>
Translation		
Reflection across x-axis		
ų.		

*Reflection across y-axis

Reflection across line y = x

Reflection across line y = -x

90° counterclockwise rotation

180° rotation

270° counterclockwise rotation

Write into your Notes

1

Check Your Understanding

Consider the following matrix representation of $\triangle ABC$.

$$\triangle ABC = \begin{bmatrix} -1 & 4 & 3 \\ 2 & -3 & 5 \end{bmatrix} \qquad A' B' C'$$

- On separate grids, sketch and label $\triangle ABC$ and its image under each of the following transformations.
 - i. Reflection across the *y*-axis
 - ii. Translation with horizontal component -3 and vertical component 2
 - iii. Reflection across the line y = x
 - iv. Rotation of 180° about the origin
 - v. Rotation of 90° counterclockwise about the origin
- **b.** For one of the transformations in Part a, use coordinates to show that $\triangle ABC$ and its transformed image are congruent.