Monday, February 25, 2019

- Warm-up
- Write the following equations in standard form: $y=a x^{2}+b x+c$
- $y=(x-3)(x+4)$
- $y=2(x+5)^{2}+6$
- $y-3=1 / 2(x-7)^{2}$
- More with parabolas

Objectives

Content: I will find and identify critical values of a parabola including y-intercept, x-intercept, vertex, focus and directrix.
Social: I will help those around me to understand by explaining my reasoning clearly.
Language: I will use the vocabulary for the critical values of a parabola including y-intercept, x intercept, vertex, focus and directrix correctly in speaking.

$$
\begin{gathered}
\text { Standard form }=\text { conic } \\
y=1 / 2(x-7)^{2} \\
\text { vertex } \rightarrow(7,3) \\
\text { focus + directrix } \\
\left.y-3=\frac{1}{2}(x-7) x-7\right) \\
y-3=\frac{1}{2}\left(x^{2}-7 x-7 x^{\prime 44}\right) \\
y-3=\frac{1}{2}\left(x^{2}-14 x+49\right) \\
y-3=\frac{1}{2} x^{2}-7 x+\frac{49}{2} \\
+3 \\
y=\frac{1}{2} x^{2}-7 x+27 \frac{1}{2}
\end{gathered}
$$

Content: I will find and identify critical values of a parabola including y-intercept, x-intercept, vertex, focus and directrix.
Social: I will help those around me to understand by explaining my reasoning clearly. Language: I will use the vocabulary for the critical values of a parabola including y-intercept, x-intercept, vertex, focus and directrix correctly in speaking.

Retied wat for

Content: I will find and identify critical values of a parabola including y-intercept, x-intercept, vertex, focus and directrix.
Social: I will help those around me to understand by explaining my reasoning clearly. Language: I will use the vocabulary for the critical values of a parabola including y-intercept, x-intercept, vertex, focus and directrix correctly in speaking.

Challenge: find the quadratic $\left({ }_{2}{ }_{\imath}\right)$

 equations given the following$=0$

Focus: $(4,6)$
Directrix: $y=0$
x-intercepts: $(0,-3)$ and $(0,6)$
$a=1$

Vertex: $(-2,4)$
$a=-1$

Focus: $(3,-2)$
 Directrix: $y=4$

Objectives

Content: I will find and identify critical values of a parabola including y-intercept, x-intercept, vertex, focus and directrix.
Social: I will help those around me to understand by explaining my reasoning clearly.
Language: I will use the vocabulary for the critical values of a parabola including y-intercept, x-intercept, vertex, focus and directrix correctly in speaking.

Focus: $(4,6)$ distance: Directrix: y = 0

$$
\sqrt[m c e]{\sqrt{\left(y_{2}-y^{\prime}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}}}
$$

$$
\begin{aligned}
& \text { Fouls to parabola } \\
& \left(\sqrt{(6-y)^{2}+(4-x)^{2}}\right)^{2}=(\sqrt{\text { Directrix to parabola }} \\
& \left.(6-y)^{2}+(4-x)^{2}=(0-y)^{2}+(x-x)^{2}\right)^{2} \\
& (6-y)(6-y)+(4-x)(4-x)=(-y)^{2}+0^{2} \\
& 36-6 y-6 y^{+} y^{2}+16-4 y-4 x+x^{2}: y^{2}
\end{aligned}
$$

