- Warm-up

Transform \triangle EFG using the following rules.
Write each answer as a matrix.

1. $(x, y) \rightarrow(-x,-y)$
2. $(x, y) \rightarrow(y-3, x+1)$

$$
\Delta \mathrm{EFG}=\left[\begin{array}{ccc}
5 & 4 & -8 \\
-1 & 5 & 6
\end{array}\right]
$$

- Rotations

Objectives:

Content: I will use rules to produce rigid transformations.
Social: I will participate in the class activities and support my group.
Language: I will explain how to translate, rotate, and reflect rigid shapes using rules.

Transform $\triangle E F G$ using the following rules. Write each answer as a matrix.

1. $(x, y) \rightarrow(-x,-y)$

$$
\left.\Delta \mathrm{EFG}={ }_{y}^{\times} \begin{array}{ccc}
E & F & G \\
5 & 4 & -8 \\
-1 & 5 & 6
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
-5 & -4 & 8 \\
1 & -5 & -6
\end{array}\right]
$$

2. $(x, y) \rightarrow(y-3, x+1)\left[\begin{array}{ccc}-1-3 & 5-3 & 6 \cdot 3 \\ 5+1 & 4+1 & -8+1\end{array}\right]=\left[\begin{array}{ccc}-4 & 2 & 3 \\ 6 & 5 & -7\end{array}\right]$

Rotations

Objectives:

Content: I will use rules to produce rigid transformations. Social: I will participate in the class activities and support my group.
LO: I will explain how to translate, rotate, and reflect rigid shapes using rules.

Let's Complete the Transformation Rules Table

Geometric Idea$n=$ horizontal $\lambda=$ vertical	Coordinate Model
Translation (oblique)	$(x, y) \rightarrow(x+h, y+k)$
Reflection across x-axis	
Reflection across y-axis	
Reflection across line $y=x$	
Reflection across line $y=-x$	
490° counterclockwise rotation	
180° rotation	
270° counterclockwise rotation	

Objectives:

Content: I will use rules to produce rigid transformations. Social: I will participate in the class activities and support my groun Language: I will explain how to translate, rotate, and reflect rigid shapes sing rules.

Write into your Notes

Line ℓ is graphed in the xy-plane below.

If line ℓ is translated up 5 units and right 7 units, then what is
the slope of the new line?
Select an Answer
(A) $-\frac{2}{5}$
(B) $-\frac{3}{2}$
(C) $-\frac{8}{9}$
(D) $-\frac{11}{14}$

Exit Slip

Choose an answer

- Explain your reasoning.
-Choose an incorrect answer, explain the mistake someone who chose that one made.

