Tuesday, October 4 2016

$$
\text { c] } \left.\ln { }^{\top} \mathrm{Ag} \text { e } \mathrm{D}\right\rfloor \ln \text { Height }+\begin{align*}
& 1 \\
& 2
\end{aligned} \quad \begin{aligned}
& 73.6 \\
& 83.8
\end{align*}
$$

- Warm-up
- Enter the given data into your $=\ln (B C])_{4}^{3}$
- Determine if Age vs. Height is a god 7 linear model
- Explain why or why not
-Check Homework

Objectives

- Content: I will review material from units 7-10 in preparation for the upeoming tert.
- Social: I will show respect to others in the class by liskening and not interrupting.
- languQge: I will write clear notes thak I ean use to study from.

Previous Assignments Questions

$$
2 g=R^{2}
$$

1. A simple random sample of 9 students was selected from a large university. Each of these students reported the number of hours he or she had allocated to studying and the number of hours allocated to work each week. A least squares linear regression was performed and part of the resulting computer output is shown below.

FRAPPY

Predictor	Coef	StDev	T	P
Constant	8.107	2.731	2.97	0.021
Work	0.4919	0.1950	2.52	0.040
$\mathrm{~S}=4.349$	$\mathrm{R}-\mathrm{Sq}=47.6 \%$	R-Sq $($ adj $)=40.1 \%$		

The scatterplot below displays the data that were collected from the 9 students.

(a) After point P , labeled on the graph on the previous page, was removed from the data, a second linear regression was performed and the computer output is shown below.

Predictor	Coef	StDev	T	P
Constant	11.123	3.986	2.79	0.032
Work	0.1500	0.3834	0.39	0.709
$\mathrm{~S}=4.327$	$\mathrm{R}-\mathrm{Sq}=2.5 \%$	$\mathrm{R}-\mathrm{Sq}(\mathrm{adj})=0.0 \%$		

Does point P exercise a large influence on the regression line? Explain.

More with the FRAPPY

Predictor	Coef	StDev	T	P
Constant	8.107	2.731	2.97	0.021
Work	0.4919	0.1950	2.52	0.040
$\mathrm{~S}=4.349$	$\mathrm{R}-\mathrm{Sq}=47.6 \%$	R-Sq $(\mathrm{adj})=40.1 \%$		

- Write the equation of the regression line:

$$
\text { Study }=8.107+0.4919 \text { work }
$$

- Explain (in context) what the slope means.

For every 1 hour increase in work, we predict a 0.4919 hour increase

- Explain (n context) what the y-intercept means. in study.
When work hairs $=0$ we predict study $=8.107$
- Explain/interpret R^{2} in context.
47.6% of the variation in study homs ram be predicted by the linear
re lationshp with unsold hours
- Calculate the correlation coefficient - what does it tell you?
$\sqrt{0.476}=\bigcirc .69 \rightarrow$ the lihoor relations hp betwem studign
- What does a positive residual indicate?

Study hows higher than predicted.

Reminder - rules about correlation...

$$
r=\underline{0} \underline{0}^{9}
$$

- If I were to switch the previous relationship to study on the x -axis and work on the y -axis, what would happen to correlation?
- If I were to change the units on study to minutes, what would happen to correlation? nothing
-What are other restrictions on correlation?
- Units?
- Limits of values?
- Limits on data types?

6

Re-view Re-expression

- Using the data from the warm-up
- Try to straighten the plot by taking the log of height
- Did that work?
- How do you know?
- Write the model for this relationship
- Use this model to predict the height of someone who is 16
- How would this work for someone who is 30 ?
- Why?

$$
\mathrm{M}
$$

All Unit Ftomework

- Vocabulary - Ghapter 7

-g 164 (3-6)
-g $165(11,12,15,16)$
-g 167 (23-28)
-g $192(3,4,12,13)$
-gD 193 (15-18, 27, 28)
-g 193 (20-22)
-gD $239(5,6)$
-g 250 (29-31)
ghas garbives shee

