Tuesday October 2, 2018

- Warm-up

- Enter the following
 data in your calculato and perform linear regression on the data comparing the distance of a threat in feet to the barks per 30 seconds
- Write the linear equation
- R
\mathbf{R}^{2}

Bark Freq of Black-Tailed Prairie Dogs

Distance From burrow	Bark Frequency
10.00	81
20.00	79
30.00	78
40.00	73
50.00	72
60.00	71
70.00	59
80.00	71
90.00	67
100.00	64
110.00	57
120.00	55
130.00	41

Homework: p p239 $(5,6)$

5. Models.
a) $\quad \ln \hat{y}=1.2+0.8 x$
$\ln \hat{y}=1.2+0.8(2)$
$\ln \hat{y}=2.8$
$\hat{y}=e^{2.8}=16.44$
b) $\sqrt{\hat{y}}=1.2+0.8 x$
$\sqrt{\hat{y}}=1.2+0.8(2)$
$\sqrt{\hat{y}}=2.8$
$\hat{y}=2.8^{2}=7.84$
c) $\begin{aligned} \frac{1}{\hat{y}} & =1.2+0.8 x \\ \frac{1}{\hat{y}} & =1.2+0.8(2)\end{aligned}$
$\frac{1}{\hat{y}}=2.8$
$\hat{y}=\frac{1}{2.8}=0.36$
d) $\hat{y}=1.2+0.8 \ln x$
d) $\quad \begin{aligned} & \hat{y}=1.2+0.8 \ln x \\ & \hat{y}=1.2+0.8 \ln (2)\end{aligned}$
$\hat{y}=1.75$
e) $\quad \log \hat{y}=1.2+0.8 \log x$

$$
\log \hat{y}=1.2+0.8 \log (2)
$$

$$
\log \hat{y}=1.440823997 \ldots
$$

$$
\hat{y}=10^{1.4408 \ldots}
$$

$$
\hat{y}=27.59
$$

Homework: p p239 $(5,6)$

6. More models.
a) $\quad \begin{aligned} & \hat{y}=1.2+0.8 \log x \\ & \hat{y}=1.2+0.8 \log (2) \\ & \hat{y}=1.44\end{aligned}$
b) $\quad \log \hat{y}=1.2+0.8 x$
$\log \hat{y}=1.2+0.8(2)$
$\log \hat{y}=2.8$

$$
\hat{y}=10^{2.8}=630.96
$$

c) $\quad \ln \hat{y}=1.2+0.8 \ln x$ $\ln \hat{y}=1.2+0.8 \ln (2)$ $\ln \hat{y}=1.7545$...
$\hat{y}=e^{1.7545 . .}=5.78$

$$
\text { d) } \quad \begin{aligned}
\hat{y}^{2} & =1.2+0.8 x \\
\hat{y}^{2} & =1.2+0.8(2) \\
\hat{y}^{2} & =2.8 \\
\hat{y} & =\sqrt{2.8}=1.67
\end{aligned}
$$

$$
\text { e) } \begin{aligned}
\frac{1}{\sqrt{\hat{y}}} & =1.2+0.8 x \\
\frac{1}{\sqrt{\hat{y}}} & =1.2+0.8(2) \\
\frac{1}{\sqrt{\hat{y}}} & =2.8 \\
\hat{y} & =\frac{1}{2.8^{2}}=0.128
\end{aligned}
$$

Bivariate Fit of Bark Freq By Distance

Below is the computer output for the appraised value and the number of rooms for houses in East Meadow, New York.

The regression equation is value $=74.8+19.718$ rooms

$$
=74.8+19.718(9)
$$

Fredictor Constant robms
$s=29.05$
Analysis of Variance
sOURCE
Regression
Etror
Total
Colf
74.80
19.718
$R-54=2$

- Regression equation.

- \mathbf{R}^{2} (coefficient of determination)
-r:
- Find the appraised value of a house with 9 rooms:

The relationship between hours of watching television in a typical day and age was examined. The data was gathered in the 1996 general Social Survey done by the National Opinion Research Center at the University of Chicago.

Predictor	Coef	SE Coef	T	P
Constant	2.1899	0.1577	13.89	0.000
age	0.017255	0.003348	5.15	0.000
$S=2.371$	$R-S q=1.4 \%$	$R-S Q(a d j)=1.3 \%$		

- What is the estimated increase in average daily hours of television watching for each one-year increase in age? 0.017
- Write the regression equation for the output. hours $=2.18+0.01$ Page
- How reliable to you find this model? Why/why not?

Homework

