Tuesday, October 2, 2018

•Warm-up

 Enter the following data in your calculato and perform linear regression on the data comparing the distance of a threat in feet to the barks per 30 seconds

- Write the linear equation
- ٠R
- **R**²

Check/collect
Homework
Computer output

Bark Freq of Black-Tailed Prairie Dogs

Prairie Dog (Black-tailed)

Distance	Bark				
From burrow	Frequency				
10.00	81				
20.00	79				
30.00	78				
40.00	73				
50.00	72				
60.00	71				
70.00	59				
80.00	71				
90.00	67				
100.00	64				
110.00	57				
120.00	55				
130.00	41				

Homework: p p239 (5, 6)

5. Models.

a)
$$\ln \hat{y} = 1.2 + 0.8x$$
 b) $\sqrt{\hat{y}} = 1.2 + 0.8x$ c) $\frac{1}{\hat{y}} = 1.2 + 0.8x$ d) $\hat{y} = 1.2 + 0.8 \ln x$
 $\ln \hat{y} = 1.2 + 0.8(2)$ $\sqrt{\hat{y}} = 1.2 + 0.8(2)$ $\hat{y} = 1.2 + 0.8(2)$ $\hat{y} = 1.2 + 0.8 \ln(2)$
 $\ln \hat{y} = 2.8$ $\sqrt{\hat{y}} = 2.8$ $\frac{1}{\hat{y}} = 1.2 + 0.8(2)$ $\hat{y} = 1.75$
 $\hat{y} = e^{2.8} = 16.44$ $\hat{y} = 2.8^2 = 7.84$ $\frac{1}{\hat{y}} = 2.8$
 $\hat{y} = \frac{1}{2.8} = 0.36$

e)
$$\log \hat{y} = 1.2 + 0.8 \log x$$

 $\log \hat{y} = 1.2 + 0.8 \log(2)$
 $\log \hat{y} = 1.440823997...$
 $\hat{y} = 10^{1.4408...}$
 $\hat{y} = 27.59$

Homework: p p239 (5, 6)

6. More models.

a) $\hat{y} = 1.2 + 0.8 \log x$ $\hat{y} = 1.2 + 0.8 \log(2)$ $\hat{y} = 1.44$

d)
$$\hat{y}^2 = 1.2 + 0.8x$$

 $\hat{y}^2 = 1.2 + 0.8(2)$
 $\hat{y}^2 = 2.8$
 $\hat{y} = \sqrt{2.8} = 1.67$

- b) $\log \hat{y} = 1.2 + 0.8x$ $\log \hat{y} = 1.2 + 0.8(2)$ $\log \hat{y} = 2.8$ $\hat{y} = 10^{2.8} = 630.96$
- e) $\frac{1}{\sqrt{\hat{y}}} = 1.2 + 0.8x$ $\frac{1}{\sqrt{\hat{y}}} = 1.2 + 0.8(2)$ $\frac{1}{\sqrt{\hat{y}}} = 2.8$ $\hat{y} = \frac{1}{2.8^2} = 0.128$

 $\ln \hat{y} = 1.2 + 0.8 \ln x$ $\ln \hat{y} = 1.2 + 0.8 \ln(2)$ $\ln \hat{y} = 1.7545...$ $\hat{y} = e^{1.7545...} = 5.78$

c)

Bivariate Fit of Bark Freq By Distance 80 70 -Bark Freq 6050 40 90 1 60 120 3Ö 0. Distance

Below is the computer output for the <u>appraised value</u> and the number of rooms for houses in East Meadow, New York.

Regression equation:
 R² (coefficient of determination)

• r:

Find the appraised value of a house with 9

The relationship between hours of watching television in a typical day and age was examined. The data was gathered in the 1996 р SE Coef Predictor Coef general Social Survey done by 0.000 Constant 2.1899 0.1577 13.89the National Opinion Research 0.000 5.150.017255 0.003348 age Center at the University of Chicago. R-Sq = 1.4%R-Sq(adj) = 1.3%S = 2.371

- What is the estimated increase in average daily hours of television watching for each one-year increase in age?
- Write the regression equation for the output. hours = 2.18 + 0.017age
- How reliable to you find this model? Why/why not?

Homework

2003 Problem #1

"FRAPPY"

{Free Response AP Problem...Yay!}

The following problem is taken from an actual Advanced Placement Statistics Examination. Your task is to generate a complete, concise statistical response in 15 minutes. You will be graded based on the AP rubric and will earn a score of 0-4. After grading, keep this problem in your binder for your AP Exam preparation.

A simple random sample of 9 students was selected from a large university. Each of these students reported the number of hours he or she had allocated to studying and the number of hours allocated to work each week. A least squares regression was performed and part of the resulting computer output is shown below.
25

6		Predictor Constant Work S = 4.349	C 8. 0.4 R-Sq =	oef 107 1919 : 47.6%	StDev 2.731 0.1950 R-Sq (adj) =	T 2.97 2.52 40.1%	P 0.021 0.040	April 15			
<u>Scorin</u> E P		<u>e:</u> I	 The scatterplot displays the data that were collected from the 9 students. (a) After point P, labeled on the graph, was removed from the data, a second linear regression was perform below. 					5 o med and t	• 10 the compute	• Work r output is sho	30 30
			P V S Dot	redictor Constant Vork = 4.327 es point P	C 11. 0.1 R-Sq = exercise a lar	oef .123 .500 .2.5% rge influer	StDev 3.986 0.3834 R-Sq (adj) = (nce on the regre	T 2.79 0.39 0.0% ession line	P 0.032 0.709 ? Explain.		
E	P	I	(b) The dis stur was poi the Exp the the date	e research covered th lying repo recorded at for this scatterplo olain how corrected least squa a.	er who condu tat the numbe orted by the si incorrectly. student is rep t. t. the least squa data (in this ; res regression	ucted the s r of hours tudent rep The corre presented ares regres part) wou n line for	tudy spent resented by P cted data by letter Q in ssion line for ld differ from the original	15- 5- 0		• 20 Work	Q.