## Tuesday, March 19, 2019

- Warm-up
- Given the diagram below; draw the ${ }_{L}$ corresponding triangle in quadrant and write the ratios for $\sin (\theta), \cos (\theta)$ and $\tan (\theta)$ for quadrant 4.

$$
\begin{aligned}
& \cdot \sin (\theta)=\frac{\text { OPP }}{n y P}=\frac{-5}{\sqrt{61}} \\
& \cdot \cos (\theta)=\frac{6}{\sqrt{61}}
\end{aligned}
$$



## Objectives

Content: I will understand the unit circle and how it connects to the trigonometric ratios.

Social: I will listen well and discuss my uncertainties with my group members. Language: I will clearly explain my application of the unit circle to trigonometric ratios in writing and to my group members.

## Quizzes

## Objectives

Content: I will understand the unit circle and how it connects to the trigonometric ratios.
Social: I will listen well and discuss my uncertainties with my group members.
Language: I will clearly explain my application of the unit circle to trigonometric ratios in writing and to my group members.

The Unit Circle radius of 1 centered © $(0,0)$

$$
\begin{aligned}
& \sin \theta=\frac{\text { opp }}{h y p}=\frac{y}{1}=y \\
& \cos \theta=\frac{a d j}{h y p}=\frac{x}{1}=x \\
& \tan \theta=\frac{\text { opp }}{\operatorname{adj}}=\frac{y}{x}
\end{aligned}
$$

Objectives
Content: I will understand the unit circle and how it connects to the trigonometric ratios. Social: I will listen well and discuss my uncertainties with my group members. Language: I will clearly explain my application of the unit circle to trigonometric ratios in writing and to my group members.

Radians just another way to measure $\begin{gathered}\text { angle }\end{gathered}$

$$
\begin{array}{ll}
\frac{1}{2} \text { rotation }=\pi & 180^{\circ} \\
\frac{1}{4} \text { rotation }=\frac{\pi}{2} & 90^{\circ} \\
\text { full rotation }=2 \pi & 360^{\circ}
\end{array}
$$

Content: I will understand the unit circle and how it connects to the trigonometric ratios. Social: I will listen well and discuss my uncertainties with my group members. Language: I will clearly explain my application of the unit circle to trigonometric ratios in writing and to my group members.

Estimating Radians

$$
\frac{1}{2} \text { rotation }=\pi \text { radians }
$$

In Exercises 1-6, estimate the angle to the nearest one-half radian.

3.

5.


4.

6.


Objectives
Content: I will understand the unit circle and how it connects to the trigonometric ratios.
Social: I will listen well and discuss my uncertainties with my group members.
Language: I will clearly explain my application of the unit circle to trigonometric ratios in writing and to my group members.

$$
\mathrm{rad}=60^{\circ} \times \frac{\pi}{180}
$$



$$
\begin{aligned}
& \text { Radians }=\text { degrees } \times \frac{\pi}{180} \\
& \text { Degrees }=\text { radians } \times \frac{180}{\pi}
\end{aligned}
$$

Content: I will understand the unit circle and how it connects to the trigonometric ratios. Social: I will listen well and discuss my uncertainties with my group members. Language: I will clearly explain my application of the unit circle to trigonometric ratios in writing and to my group members.

## Converting Practice

In Exercises 47-50, rewrite each angle in radian measure as a multiple of $\pi$. (Do not use a calculator.)
47. (a) $30^{\circ}$
(b) $150^{\circ}$
49. (a) $-20^{\circ}$
(b) $-240^{\circ}$
48. (a) $315^{\circ}$
(b) $120^{\circ}$
50. (a) $-270^{\circ}$
(b) $144^{\circ}$

In Exercises 51-54, rewrite each angle in degree measure. (Do not use a calculator.)
51. (a) $\frac{3 \pi}{2}$
(b) $\frac{7 \pi}{6}$
52. (a) $-\frac{7 \pi}{12}$
(b) $\frac{\pi}{9}$
53. (a) $\frac{7 \pi}{3}$
(b) $-\frac{11 \pi}{30}$
54. (a) $\frac{11 \pi}{6}$
(b) $\frac{34 \pi}{15}$

## Objectives

Content: I will understand the unit circle and how it connects to the trigonometric ratios.
Social: I will listen well and discuss my uncertainties with my group members.
Language: I will clearly explain my application of the unit circle to trigonometric ratios in writing and to my group members.

## Preview - Trig Makes Waves



## Objectives

Content: I will understand the unit circle and how it connects to the trigonometric ratios.
Social: I will listen well and discuss my uncertainties with my group members.
Language: I will clearly explain my application of the unit circle to trigonometric ratios in writing and to my group members.

