## Friday "May 3, 2019

- Warm-up
- Complete the sample space for the sum ot two spinners and calculate the following probabilities
- $P($ sum of 10$)=0 \quad \frac{0}{9}$
- $P($ odd sum $)=1 \quad \frac{9}{9}$
- $P($ sum of 5 and odd spinner $=3)=\frac{1}{9}$ both
- $P($ sum of 5 or odd spinner $=3)=\frac{4}{9}$ lither one
- $P\left(\right.$ sum of $\left.5\right|_{n}$ odd spinner $\left.=3\right)=\frac{1}{3} \quad$ that total

|  |  | 1 | 3 | 5 |
| :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | (5) | 7 |
|  | 4 | 5 | (7) | 9 |
|  | 6 | 7 | (9) | 11 |

- Look at Exit Slips
- Review 2-way tables
- Quiz
- War with a Twist


## Objectives

Content: I will review the process of calculating probabilities.
Social: I will participate in the class activities.
Language: I will read questions carefully to apply probability vocabulary.

## Exit Slip

## A fair coin is tossed four times. What is the probability of getting at least one 'Tail'?

(A) $1 / 16 \mathrm{H}+\mathrm{l}+\mathrm{T}$ Show four sample space
(B) $1 / 4 \quad 1+1+T \quad 1+$
(C) $3 / 4 \quad 1+T 1+1+$
(D) $15 / 16$

> TH HO

Count the favorable outcomes
Write your probability
Choose your answer

## Objectives

Content: I will review the process of calculating probabilities.
Social: I will participate in the class activities.
Language: I will read questions carefully to apply probability vocabulary.

# Exit Slip $\frac{3}{8} \cdot \frac{2}{7}=\frac{6}{56}$ <br> $\frac{14}{3 X} \cdot \frac{3}{82}$ <br> $\frac{1}{6}$ 

A box contains 5 black and some green balls. If two balls are drawn from the box at random, and the probability that both the balls are green s $1 / 6$, how many green balls are in the box? [with calculator)

$$
\text { Draw a picture } \frac{18}{21 \theta} \cdot \frac{4}{9}=\frac{1}{18}
$$

Figure out probability of "not green"
Figure out how many there are total Figure out how many are green Choose your answer

## Objectives

Content: I will review the process of calculating probabilities.
Social: I will participate in the class activities.
Language: I will read questions carefully to apply probability vocabulary.

A store is deciding whether to install a new security system to prevent shoplifting. Based on store records, the security manager of the store estimates that 10,000 customers enter the store each week, 24 of whom will attempt to shoplift. Based on data provided from other users of the security system, the manager estimates the results of the new security system in detecting shoplifters would be as shown in the table below. $\mathrm{P}\left(\left|\mathrm{Vut}^{-1}\right| \mathrm{Alarm}\right)$

|  | $\left(\begin{array}{c}\text { Alarm } \\ \text { sounds }\end{array}\right.$ | Alarm does <br> not sound | Total |
| :--- | :---: | :---: | :---: |
| Customer attempts to <br> shoplift | 21 | 3 | 24 |
| Customer does not attempt <br> to shoplift | 35 | 9,941 | 9,976 |
| Total | 56 | 9,944 | 10,000 |

According to the manager's estimates, if the alarm sounds or a customer, what is the probability that the customer did not ttempt to shoplift?
A) $0.03 \%$
B) $0.35 \%$
C) $0.56 \%$
D) $62.5 \%$


Objectives
Content: I will review the process of calculating probabilities.
Social: I will participate in the class activities. Language: I will read questions carefully to apply probability vocabulary.

Grid-In:

## Exit Slip

A die is rolled four times. What is the probability of getting a number greater than ' 2 ' in the first time, greater than ' 3 ' in the second time, greater than ' 4 ' in the third time, and greater than ' 5 ' in the fourth time? [with calculator]

## Show your process for full credit

 Think through each individual probability, then put it together

## Objectives

Content: I will review the process of calculating probabilities.
Social: I will participate in the class activities.
Language: I will read questions carefully to apply probability vocabulary.

## Brain Break

## Objectives

Content: I will review the process of calculating probabilities. Social: I will participate in the class activities.
Language: I will read questions carefully to apply probability vocabulary.


- $\mathrm{P}($ vanilla OR adult $)=\frac{92}{269}+\frac{119}{269}-\frac{54}{269}=\frac{157}{269}$
- Is liking chocolate or stranyberry ice cream mutually exclusive?
$Y_{C S}-$ mutually exclusive
- Is being an adult and liking vanilla independent?

Objectives
Content: I will review the process of calculating probabilities.
Social: I will participate in the class activities.
Language: I will read questions carefully to apply probability vocabulary.

## Questions?

## Objectives

Content: I will review the process of calculating probabilities. Social: I will participate in the class activities.
Language: I will read questions carefully to apply probability vocabulary.


## Objectives

Content: I will review the process of calculating probabilities.
Social: I will participate in the class activities.
Language: I will read questions carefully to apply probability vocabulary.

## - Play in pairs <br> 

- Divide the cards equally among the two players
- Each player turns two cards face up and determines the probability of selecting each of those two cards by suit.
- The player with the greater probability takes all four cards and places them at the bottom of their stack. If there is a tie, players find the sum of their two cards ( $\mathrm{A}=1, \mathrm{~J}=11$, $Q=12, K=13)$. The player with the greater sum then takes all four cards.
- In the case of a second tie, each player turns one more card face up and repeats the process.
- Play continues until one player runs out of cards, or time is called.


## Objectives

Content: I will review the process of calculating probabilities.
Social: I will participate in the class activities. Language: I will read questions carefully to apply probability vocabulary.

