Thursday, May 2, 2019

- •Logic Gates
 - what are they?
 - NOT
 - AND
 - OR
 - Combinations
- Adding Binary
- Moore's Law

Objectives

Content: I will <u>complete</u> and <u>analyze</u> **truth tables** and **logic gate** designs to accomplish **logic**

tasks.

Social: I will participate in class activities.

Language: I will <u>define</u> in my journal AND, OR and NOT both in regular English and in applications of circuits.

<u>Journal</u>

Define the words AND, OR and NOT

Logic Gates

- Why logic gates? They are used to manipulate the signals in the processor.
- Logic gates are simple circuits which perform Boolean functions. In other words, a circuit which produces an output based on the input.
- Both the input and the output must be 1's and 0's and therefore these gates are the basis of all logic circuits.
- The 1's and 0's are actually where a small voltage is a 1 and a very small voltage is a 0

Objectives

Content: I will <u>complete</u> and <u>analyze</u> truth tables and logic gate designs to accomplish logic

tasks.

Social: I will <u>participate</u> in class activities.

http://logic.ly/demo

➡ logic.ly	File	Edit	View	Tools	Simulate	Help			
🔹 📄 🖀 🌢	D	c	+	K 🖣	i ∎ ⊖	* *	۰		
Input Controls									
Toggle Switch	Pu	©–∘ sh Button	E						
⊂⊐–∘ Clock	Hig	1 ⊸ h Constant	L						
0 ⊸ Low Constant									
Output Controls									
₩ Ţ	4	Bit Digit							
LIGHT BUID		on orgin							
Logic Gates									
o − [⊃−o Buffer	N	o -∕⊃⊷ OT Gate	Ŀ						
∷D⊸ AND Gate	NA	∷ D ⊷ AND Gate							

Objectives

Content: I will <u>complete</u> and <u>analyze</u> **truth tables** and **logic gate** designs to accomplish **logic** tasks. **Social**: I will <u>participate</u> in class activities.

Logic Gates - NOT

The **NOT** gate is sometimes known as an INVERTER as it will output the **opposite** or inverse of the input.

We can show this in a truth table.

Input	Output
0	1
1	0

And test it in logic.ly

logic.ly

File

Edit

ିଚ ୯ 📐 🕂

View

Tools

Simulate

* 🐚 🖺 🛛 🗢 🏠 🏟

Help

<u>Objectives</u> Content: I will <u>complete</u> and <u>analyze</u> truth tables and logic gate designs to accomplish logic tasks.

Social: I will <u>participate</u> in class activities. Language: I will <u>define</u> in my journal AND, OR and NOT both in regular English and in applications of circuits.

Logic Gates - AND

The **AND** gate takes two inputs and gives an output only if **both** inputs are true.

We can show this in a truth table. This time we have two inputs A and B.

Input A	Input B	Output
0	0	0
0	1	0
1	0	0
1	1	1

Objectives

Content: I will <u>complete</u> and <u>analyze</u> truth tables and logic gate designs to accomplish logic tasks.
Social: I will <u>participate</u> in class activities.
Language: I will <u>define</u> in my journal AND, OR and NOT both in regular English and in applications of circuits.

Logic Gates - OR

The **OR** gate takes two inputs and gives an output if either one input **or** the other input **or** both inputs are true.

We can show this in a truth table. Again we have two inputs A and B.

Input A	Input B	Output			
0	0	0			
0	1	1			
1	0	1			
1	1	1			
Objectives					
Content: I will complete and analyze truth tables and log					
gate designs to accomplish logic tasks.					
Social: I will <u>participate</u> in class activities.					
Language: I will <u>define</u> in my journal AND, OR and NOT					

both in regular English and in applications of circuits.

Combining Logic Gates NOT & AND - NAND

We can also combine two or more gates and create a composite truth table.

Input A	Input B	A AND B	NOT (A AND B)
0	0		
0	1		
1	0		
1	1		

Objectives Content: I will <u>complete</u> and <u>analyze</u> truth tables and logic gate designs to accomplish logic tasks. Social: I will <u>participate</u> in class activities. Language: I will <u>define</u> in my journal AND, OR and NOT both in regular English and in applications of circuits.

Combining Logic Gates NOT & OR -NOR AND IDWNOD AND

We can also combine two or more gates and create a composite truth table.

Input A	Input B	A OR B	NOT (A OR B)
0	0		
0	1		
1	0		
1	1		

Objectives Content: I will <u>complete</u> and <u>analyze</u> truth tables and logic gate designs to accomplish logic tasks. Social: I will <u>participate</u> in class activities. Language: I will <u>define</u> in my journal AND, OR and NOT both in regular English and in applications of circuits.

Complete the Worksheet ~13 NOR -> NOT (A OR B) NOTA NUTB R A

Objectives

Content: I will <u>complete</u> and <u>analyze</u> **truth tables** and **logic gate** designs to accomplish **logic** tasks. **Social**: I will <u>participate</u> in class activities.

Objectives

Content: I will <u>complete</u> and <u>analyze</u> **truth tables** and **logic gate** designs to accomplish **logic** tasks. **Social**: I will <u>participate</u> in class activities.

Adding Binary – page 2

Objectives

Content: I will <u>complete</u> and <u>analyze</u> truth tables and logic gate designs to accomplish logic tasks. Social: I will <u>participate</u> in class activities. Language: I will define in my journal AND, OR and NOT both in regular English and in applications of

circuits.

with A/Prof. Alexander Dreiling

Objectives

Content: I will <u>complete</u> and <u>analyze</u> **truth tables** and **logic gate** designs to accomplish **logic** tasks. **Social**: I will <u>participate</u> in class activities. **Language**: I will <u>define</u> in my journal AND, OR and NOT both in regular English and in applications of

circuits.

Extra Credit...

O C A https://www.youtube.com/watch?v=2ugsWUv-DVs

YouTube Search WHAT'S NEXT: MATRIX MULTIPLY: RELATIVE SPEEDUP TO A **PYTHON VERSION (18 CORE INTEL)** IMPROVING SW EFFICIENCY? 100.000

The End of Moore's Law & The Rise of AI

Objectives

Content: I will <u>complete</u> and <u>analyze</u> truth tables and logic gate designs to accomplish logic tasks. **Social**: I will <u>participate</u> in class activities.

Objectives

Content: I will <u>complete</u> and <u>analyze</u> truth tables and logic gate designs to accomplish logic tasks. **Social**: I will <u>participate</u> in class activities.