Friday, April 19, 2019
-Warm-up 180-(25+90)

- Find both missing sides of the right triangle:

- Inverse Trig Functions
- Using inverse trig to find angles

Objectives
Content: I will apply right triangle trigonometry to calculate missing angles.
Social: I will help those around me who do not understand.
Language: I will clearly define inverse function and what it means in my notes.

Inverse Trig Functions,

1. $(\sin (\theta))=\left(\frac{3}{7}\right)$
2. $(\cos (\theta))=(0.5431)$
$\theta=25.376^{\circ}$
3. $\tan (x)=0.5431$
$\theta=57.105^{\circ}$
4. $\tan (B)=3.5\left(\frac{7}{2}\right)$
$B=$
$x=28.506^{\circ}$
5. $\cos (A)=\frac{13}{7} \frac{\text { adj }}{\text { hyp }} \rightarrow$ shoved be largest

Using Inverse Trig Functions $\longrightarrow x=35.685^{\circ}$

$$
\text { b) } \text { PD }^{8}
$$

Pythagorean Theorem

$$
\begin{aligned}
& \text { Hhagorean lever } \\
& \begin{aligned}
& 7.5^{2}+t^{2}=9^{2} \\
&-7.5^{2} \\
&-7.5^{2} \\
& 9^{2-7.5^{2}}
\end{aligned}
\end{aligned}
$$

Content: I will apply right triangle trigonometry to calculate missing angles. Social: I will help those around me who do not understand. Language: I will clearly define inverse function and what it means in my notes.

$$
\begin{aligned}
& \sin ^{-1}(\sin (x))^{5 n^{-1}}\left(\frac{15}{17}\right)^{c} \\
& x=61,927^{\circ} \\
& \tan ^{-1}(\tan (\theta))^{\tan } \cdot\left(\frac{8}{5}\right) \\
& \theta: 57.994^{\text {d }}
\end{aligned}
$$

Soh Cah Toa

Objectives

Content: I will apply right triangle trigonometry to calculate missing angles.
Social: I will help those around me who do not understand.
Language: I will clearly define inverse function and what it means in my notes.

