Wednesday, February 6, 2019

- Warm-up
 - Trace the shape you were given on your warmup paper
 - Identify everything you can about that shape
 - Both name and identifying factors

Quadrilaterals

Objectives

- - Content: I will use slope and distance to classify quadrilaterals.
 - Social: I will work with my group, involving and encouraging everyone.
 - Language: I will clearly write my reasoning for the classification of the quadrilaterals.

Classification of Triangles sum of angle 3 sides <>> 3 angles Sides

Brain Break

Celebration

(15 seconds

can include

clean music

4 sides > sum et angles = 360 pripin / Daralle logram trapezoid apposite sides 1 apposite side length 2 pairs exactly one parallel pair of parallel of equal ad jacent Kactarale Sides opposite sides // opposite sides ! adjacent sides same - Sides Same are perpendicular A DEL Sides same length adjacent sides are

Reminder:

- $(x_1, y_1)(x_2, y_2)$ stope = $(y_2 y_2)$

· Parallel Lines: Same sope

• Perpendicular Lines: reciprocals (flipped)

• Length (distance): $\sqrt{-}$ $\left(y_2 - y_1\right)^2 + \left(x_2 - x_2\right)^2$

Free Time

Together

quad
$$ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$$
 quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$ quad $ABCD = \begin{bmatrix} -3 & 2 & 0 & -5 \\ 7 & 5 & -1 & 1 \end{bmatrix}$

Side	Slope	Length
AB	- 25	V29
ВС	3 + 5	J40 = 2510
CD	- 2 5	V29
DA	3	V40

Slope =
$$\frac{5-7}{253} = -\frac{2}{5}$$
 distance $(5-7)^2 + (2-3)^2$
AB = $\sqrt{(5-7)^2 + (2-3)^2}$
(Not) $\sqrt{(2-3)^2 + (5)^2}$

