Wednesday, December 12, 2018

- Warm-up
- According to the given data is gender independent of handedness?
$P(F) \stackrel{?}{=} P(F \mid R)$ because Gender compared to handedness

$$
\frac{53}{121} \stackrel{46}{=}
$$

the probability
$0.43 \stackrel{?}{=} 0.42$
of a female
given right
handed ness is

female those

- Talk about tests female those are independut
- Review Simulations
- Take a sheet of paper and fold it into 4's

ルO!ฉગӘ|fӘУ \ddagger ડəـ

Overall Test	2 missed MC
- How did you	- What did you
prepare?	choose? Why?
- Why were you	hat should
successful (or	you have
not successfu)	chosen? Why?
Worst FR	Worst FR Fix
How did you prepare?	- Rework that problem -
Why weren't	explaining
you	what you now
successful?	understand.

Simulation Review

TTTTT F

- Suppose a person is taking a 5 question True/False Quiz and makes random guesses for each question. What values are in the sample space? F
- What are the probabilities of each value (equally likely?)? yes
- Using the given random number table, design a simulation to determine the probability of correctly answering at least 3 out of 5 questions.

- Run your simulation.
- Write your conclusion.

$\frac{638(73)}{20025}$ $9885923851 \quad 2796562394$ $3366662570 \quad 6477578428$ 8166626440205720
- How does that compare to the theoretical probability?

Modify $\left.\quad\left(\frac{1}{5}\right)^{6}\left(\frac{4}{5}\right)^{4}=0.0000^{26} \quad \begin{array}{l}\frac{1}{5} \rightarrow 20 \% \\ (0.20)^{6}(08)^{4}=\end{array}\right)=\$ 80 \%$

- Now it is 10 question multiple choice test - $0,1 \quad 2.9$ simulate the probability of "passing" the test (60\% or better)
- Compare to the theoretical probability of getting every answer correct.

More MC with probability

