Friday, March 1, 2019

- Warm-up
- Multiply the following binomials:

$$
\begin{aligned}
& (x-8)(x+1) \\
& x^{2}+1 x-8 x-8 \\
& x^{2}-7 x-8
\end{aligned}
$$

$$
\begin{aligned}
& (x-3)(x-6) \\
& x^{2}-\frac{6 x}{x^{2}-9 x}-9 x+18
\end{aligned}
$$

- Factoring polynomials

Objectives:

Content: I will factor trinomials. Social: I will demonstrate my work to the group as well as the class. Language: I will write my factoring process clearly for myself and others.

Factoring \rightarrow Working Backwards

If I had a trinomial: $x^{2}+5 x+6^{3}$ and factored it to: $(\boldsymbol{x}+\boldsymbol{m})(\boldsymbol{x}+\boldsymbol{n})$
 what do I know about the product of $m \& n ?+6$
$+6 \cdot+1$
$+2 \cdot+3$
$-2 \cdot-3$
what do l know about the sum of $m \& n$?
$+5$
what are my options?

Objectives:
Content: I will factor trinomials.
Social: I will demonstrate my work to the group as well as the class.
Language: I will write my factoring process clearly for myself and others.
factor it to: $(x+m)(x+n)$ what do I know about the product of m \& n ?

Try some

 what are my options?$$
16 \cdot+2
$$

$$
(x+3)(x+4) \quad \begin{array}{ll}
-1 & +12 \\
-1 & -12
\end{array}
$$

$$
(x+4)(x+3)^{\prime}
$$

$$
\mathbf{y}^{\mathbf{2}}+\mathbf{9 y}+\mathbf{1 8} \frac{\left.\begin{array}{c}
1.18 \\
2.9 \\
3.6
\end{array}\right)}{}
$$

$$
(y+3)(y+6)
$$

Content: I will factor trinomials.
Social: I will demonstrate my work to the group as well as the class.
Language: I will write my factoring process clearly for myself and others.

What if I had this trinomial: $x+6 x+8$

$$
(x-2)(x-4)
$$ and factored it to: $(\boldsymbol{x}+\boldsymbol{m})(\boldsymbol{x}+\boldsymbol{n})$ what do I know about the product of $m \& n$?

what are my options?
what do I know about the sum of $m \& n ?-6$
$\underset{+}{=}$
what are my options?

Objectives:
Content: I will factor trinomials.
Social: I will demonstrate my work to the group as well as the class.
Language: I will write my factoring process clearly for myself and others.
factor it to: $(x+m)(x+n)$ what do I know about the product of $m \& n$? what are my options? what do I know about the sum of $m \& n$? what are my options?

Try some more

 $\mathbf{x}^{2}-4 \mathbf{- 4}+\mathbf{3}-1+3$$(x-1)(x-3)$

$$
\begin{gathered}
\mathbf{x}^{2}-6 x+5 \\
(x-1)(x-5)
\end{gathered}
$$

\[

\]

What if I had this trinomial: $x^{2}-7 x-8 \quad(x+1)(x-8)$ and factored it to: $(x+m)(x+n) \quad(x-8)(x+1)$
what da x know about the product of $m \& n ?-8$
 $x^{2}-2 x-15 \quad(x+3)(x-5)$
what are ny options?

$$
-5 x+3 x
$$

Braí Break

Which one doesn't belong?

Which one doesn't belong?

2

Which one doesn't belong?

\mathbb{Q} if there annere aur fivst)

$$
\begin{aligned}
& x^{2}-6 x-7+1+7-1 \quad x^{2}-5 x+6 \begin{array}{l}
\frac{+2-3}{-2-3} \\
-1-6 \\
-1-6
\end{array} \quad \frac{5 x}{5}+\frac{35}{5} \\
& (x-7)(x+1) \quad(x-2)(x-3)^{-1} \underbrace{5}_{x x-x+x}(x+7) \\
& \frac{8 x^{2}}{8}+\frac{32}{8} \quad \frac{4 x^{2}}{4}-\frac{24 x}{4}+\frac{32}{4} \\
& \frac{3 x^{3}}{3 x}+\frac{6 x^{2}}{3 x}+\frac{3 x}{3 x} \\
& \left.8\left(x^{2}+4\right)\right)_{+2+2} 4\left(x^{2}-6 x+8\right) \\
& 3 x\left(x^{2}+2 x+1\right) \\
& 3 x(x+1)(x+1) \\
& 3 x(x+1)^{2}
\end{aligned}
$$

factor it to: $(x+m)(x+n)$
is there a common factor to divide out?
Try some more what do I know about the product of $m \& n$? what are my options?
what do I know about the sum of $m \& n$? what are my options? m

$$
\begin{aligned}
& \frac{2 x^{2}}{2}-\frac{8 x}{2}-\frac{64}{2}
\end{aligned}
$$

$$
\begin{aligned}
& m\left(m^{2}+6 m-72\right) \quad \begin{array}{ccc}
2.24 \\
3.24
\end{array} \\
& m(m-6)(m+12) \begin{array}{c}
4 \cdot 18 \\
-6 \cdot 12
\end{array} \\
& 2(x+4)(x-8) \\
& 2(x-8)(x+4) \\
& \frac{3 x^{3}}{3 x}-\frac{15 x^{2}}{3 x}-\frac{18 x}{3 x} \\
& y^{2}+2 x-15 \\
& 3 x\left(x^{2}-5 x-6\right) \rightarrow 3 x(x+1)(x-6)
\end{aligned}
$$

Show Down

Objectives:
Content: I will factor trinomials.
Social: I will demonstrate my work to the group as well as the class. Language: I will write my factoring process clearly for myself and others.

Questions

$$
\begin{array}{llll}
(x-2)(x+15) & (x-8)(x+3)^{8} & (x+7)(x+8) & (x-4)(x-8) \\
x^{2}+13 x-30 & x^{2}-5 x-24 & x^{2}+15 x+56 & x^{2}-12 x+3
\end{array}
$$

$$
x^{2}+14 x+49
$$

$$
x^{2}-25
$$

$3 x^{2}-15 x+18 \quad 2 x^{2}+16 x+32$

Special Cases

Perfect Squares

Difference of Squares

$$
\begin{aligned}
& x^{2}-8 x+16 \\
& x^{2}+12 x+36
\end{aligned}
$$

$$
x^{2}-4
$$

$$
x^{2}-81
$$

$4 x^{2}+20 x+25$
$49 a^{2}-64 b^{2}$

Objectives:
Content: I will factor trinomials.
Social: I will demonstrate my work to the group as well as the class. Language: I will write my factoring process clearly for myself and others.

