

Content Objective: I will use formulas to calculate distance and midpoint. Social Objective: I will listen carefully and ask questions when I do not understand. Language Objective: I will take clear notes to calculate distance.

Team Builder

Oroup number # names

Unit Sheet

Math 2 Block Unit 3 Coordinate	4 Computer Lab Distance Formula	5 Calculating Slope and its uses	6 Classifying Shapes Day 1	7 Classifying Shapes "Performance"	8 NO SCHOOL In-Service Day
Methods	11 Computer Lab More with Area & Perimeter	12 Circles	13 Review	14 Unit 3 Test A	15 NO SCHOOL In-Service Day
I've just found 10,000 ways 'that WON'T WORK -THOMAS EDISON	18 NO SCHOOL Presidents' Day	19 Coordinate Translations	20 Coordinate Reflections	21 Coordinate Rotations	22 Coordinate Dilations
Video: Distance, Midpoint & Slope	25 Computer Lab Coordinate Composite	26 Review	27 Unit 3 Test B	No, No, No! A CUT TRIANGLE! LIKE T	E TRIANGLE, A CUTE
http://bit.ly/2DF3d4Q				MR. ARMSTRONG CLASS BEFORE FO	S'S FINAL GEOMETRY RCED RETIREMENT

Characteristics of Quadrilaterals	<u>Slope Formula</u>	Midpoint Formula
Parallelogram:		
Rectangle:		
Rhombus:	<u>Parallel:</u> <u>Perpendicular:</u>	Distance Formula
Square:		
Trapezoid:		
Kite:		
	Geometric Idea	Coordinate Model
Characteristics of Triangl Rig	Translation	
	Reflection across x-axis	
Isoscel	Reflection across y-axis	
Equilater	^{al} Reflection across line y = x	
Scale	Reflection across line y = -x	
	90° counterclockwise rotation	
	180° rotation	
	 270° counterclockwise rotation 	

Language Objective: I will take clear notes to calculate distance.

 $d = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$ Practice... 1) (4,3) (-4,2)

(-4,2) d= J(3-2)2 + (4 (4,3)(4, 3), (-3, 4)7) (0, 4), (2, 3) (4, 0), (-4, 1)

Content Objective: I will use formulas to calculate distance and midpoint. Social Objective: I will listen carefully and ask questions when I do not understand. Language Objective: I will take clear notes to calculate distance.

x